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SEMESTER ONE

Chapter 1

1. Let V be a normed vector space.

(a) Prove that
‖x− y‖ ≥ |‖x‖ − ‖y‖|

for all vectors x, y ∈ V .

(b) Prove that the norm defines a continuous map V → R≥0 by writing
x 7→ ‖x‖.

(c) In a normed vector space V prove that addition defines a continuous
function +:V × V → V . What can you say about scalar multiplica-
tion?

2. Let V and W be normed vector spaces. Let us write V ⊕W to denote the
space of pairs

V ⊕W = {(x, y) | x ∈ V, y ∈W}.

(a) Show that we can define a norm on the space V ⊕W by the formula

‖(x, y)‖ = ‖x‖+ ‖y‖ x ∈ V, y ∈ ”.

(b) Let (xn) and (yn) be sequences in the spaces V and W with norm
limits x and y respectively. Show that the sequence (xn, yn) in V ⊕W
converges in norm in V ⊕ ” to the limit (x, y).

(c) Suppose that V and W are Banach spaces. Is V ⊕W necessarily a
Banach space? Justify your answer.

(d) Let n ∈ N. Use the above to prove that for Rn and Cn are Ba-
nach spaces. You may use without proof the fact that R and C are
complete.
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3. (a) Let c0 be the vector space of sequences (an) in C such that an → 0
as n→∞, with pointwise addition and scalar multiplication. Prove
that we have a norm on c0 defined by the formula

‖(an)‖ = sup{|an| | n ∈ N}.

(b) Is the space c0 a Banach space? Justify your answer.

4. Let l∞ be the Banach space of bounded sequences, (an), in C, with norm
defined as above. Which of the following are closed subsets of l∞? Justify
your answer.

(a) The space c0.

(b) The vector space c00 of all sequences (an) of complex numbers for
which there exists N with an = 0 whenever n ≥ N .

(c) For a given N , the vector space cN of all sequences (an) of complex
numbers such that an = 0 whenever n ≥ N .

Chapter 2

1. Use the Hahn-Banach theorem to show the following results for a normed
vector space V :

(a) If V 6= {0}, show that V ∗ 6= {0}.
(b) Let x, y ∈ V . Suppose that f(x) = f(y) for every bounded linear

map f :V → F. Show that x = y.

(c) Let x ∈ V . Suppose c ∈ R, and |f(x)| ≤ c whenever f ∈ V ∗ satisfies
the inequality ‖f‖ ≤ 1. Show that ‖x‖ ≤ c.

2. Define linear maps S, T :C[0, 1]→ C[0, 1] by the formulae

S(f)(s) =

∫ s

0

f(t) dt T (g)(s) = sg(s).

(a) Prove that S and T are bounded, and find ‖S‖ and ‖T‖.
(b) Do S and T commute? Find ‖ST‖ and ‖TS‖.

3. Let P be the set of all polynomial functions.

(a) Show that P has a norm defined by the formula

‖a0 + a1x+ · · ·+ anx
n‖ = max(|a1|, . . . , |an|).
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(b) Let A:P → P and B:P → P be linear maps defined by the formulae

A(a0 + a1x+ a2x
2 + · · ·+ anx

n) = a0 + a1x+ 2a2x
2 + · · ·+ nanx

n

and

B(a0 + a1x+ a2x
2 + · · ·+ anx

n) = a0 + a1x+
1

2
a2x

2 + · · ·+ 1

n
anx

n

respectively.

Show that B is invertible, with inverse A.

(c) Show that B is a bounded linear map. Is A a bounded linear map?
Justify your answer.

(d) From the above and the open mapping theorem, what can we deduce
about the completeness of P ?

4. Let V and W be normed vector spaces, and let T :V →W be a surjective
linear map.

(a) Prove that T is open if and only if there exists m > 0 such that

‖Tv‖ ≥ m‖v‖

for all v ∈ V .

(b) Prove that T is open if and only if there exists δ > 0 such that

BW (0, δ) ⊆ T [BV (0, 1)] ⊆W.

(c) Give an example of a bounded and bijective linear map between
normed vector spaces which is not open.

Chapter 3

1. Let V and W be a normed vector space. Use the Hahn-Banach theorem
to show the following statements are true.

(a) Let V 6= {0}. Then V ∗ 6= {0}.
(b) Let x, y ∈ V . Suppose f(x) = f(y) for every bounded linear func-

tional f . Then x = y.

(c) Let c ≥ 0 and x ∈ V . Suppose |f(x)| ≤ c whenever f ∈ V ∗ and
‖f‖ ≤ 1. Then ‖x‖ ≤ c.

2. Let V be a vector space, and let W be a subspace of V . Prove using
Zorn’s lemma that there is a vector space Z such that Z ∩W = {0} and
Z +W = V .
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3. Let A be the set of all functions f : [0, π]→ R of the form

f(x) = α0 + α1 cosx+ · · ·+ αn cos(nx)

where αi ∈ R.

Prove that A is a dense subset of the set CR[0, π].

4. Let V be a normed vector space, let {v1, . . . , vn} be linearly independen-
dent, and let λ1, . . . , λn ∈ F. Prove that we have a bounded linear map
f :V → F such that f(vi) = λi for all i.

Chapter 4

1. Let H be a Hilbert space, and let S be a subset of H.

(a) Prove that S⊥ is a linear subspace of H, and that S⊥ = Span(S)⊥.

(b) If x ∈ S and v ∈ S⊥, show that ‖x+ v‖2 = ‖x‖2 + ‖v‖2.

(c) Let A and B be subsets of H. Prove that

(A ∪B)⊥A⊥ ∩B⊥.

(d) Let S′ ⊆ S. Prove that S⊥ ⊆ (S′)⊥.

(e) Let V be a subspace of H. Prove that (V )⊥ = V ⊥.

2. Let H and H ′ be Hilbert spaces, and let T :H → H be a bounded linear
map. Show that

T [H]⊥ = kerT ∗.

3. (a) Let H be a Hilbert space. Prove that we have a conjugate-linear
isometry J :H → H∗ defined by writing

J(v)(x) = 〈v, x〉 v ∈ H, x ∈ H.

(b) Prove that the map J is invertible. You may use the Riesz represen-
tation theorem without proof.

(c) Let H be a Hilbert space. Prove that the spaces H and (H∗)∗ are
isometrically isomorphic.

4. Define bounded linear maps A,B: l2 → l2 by the formulae

A(a1, a2, a3, a4 . . .) = (0, a1,
a2
2
,
a3
3
,
a4
4
, . . .)

and
B(a1, a2, a3, a4 . . .) = (a2,

a1
2
, a4,

a3
2
, a6,

a5
2
, . . .)

respectively. Compute A∗ and B∗.
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Chapter 5

1. (a) What does it mean to say an infinite set is linearly independent ?

(b) Prove that any orthogonal set is linearly independent.

2. Prove that every Hilbert space has a basis.

[Hint: You need to use Zorn’s lemma]

3. (a) Let S be a subset of a Hilbert space H. Prove that S⊥ = Span(S)⊥.

(b) Let H be a Hilbert space, and let (en)∞n=1 be an orthonormal set such
that for any element x ∈ H, we have

‖x‖2 =

∞∑
n=1

|〈en, x〉|2.

Prove that (en) is an orthonormal basis of H.

4. (a) Prove that any set which is dense in C[0, π] under the supremum
norm is also dense in L2[0, π]. Deduce, from the previous problem
sheet, that the set of linear combinations of the functions fn: [0, π]→
R defined by the formula fn(x) = cos(nx), where n is a non-negative
integer, is dense in L2[0, π].

(b) Define en ∈ L2[0, π] by the formulae

e0(x) =
1√
π

en(x) =

√
2

π
cos(nx), n ≥ 1.

Prove that the set {e0, e1, e2, . . .} is an orthonormal basis for the
space L2[0, π].

(c) Define a function f : [0, π] → R by f(x) = sinx. Find coefficients
αn ∈ R such that

f =

∞∑
n=0

αnen

and calculate the sum
∞∑
n=0

|αn|2.

You may use any standard facts about series involving orthonormal
bases of Hilbert spaces without proof.

5. Let ek(t) = exp(ikt).

(a) Let f(x) = x. Find coefficients ak ∈ C such that the series

∞∑
k=−∞

akek = f

in the space L2[0, 2π].
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(b) Use the above to evaluate the series

∞∑
k=1

1

k2
.

SEMESTER TWO

Chapter 1

1. Let f ∈ L1(R) be piecewise-continuous. Let α ∈ R. Show that the
following statements all hold.

(a) F{eiαxf(x)} = f̂(ω − α).

(b) F{f(x− x0)} = f̂(ω)e−iωx0 .

(c) Let α > 0. The F{f(αx)} = f̂
(
ω
α

)
.

(d) Let α, β ∈ C and g be another piecewise-continuous function in

L1(R). Then F{αf(x) + βg(x)} = αf̂(ω) + βĝ(ω).

2. Let f ∈ L1(R) be piecewise-differentiable. Suppose f ′ ∈ L1(R), and
lim|x|→∞ f(x) = 0. Prove that

F{f ′(x)} = iωf̂(ω).

3. Let α > 0. Calculate the Fourier transform F(e−α|x|).

4. Let σ > 0. Let

gσ =
1

σ
exp

(
−x2

2σ2

)
.

(a) Calculate the Fourier transform ĝσ.

(b) Prove that for any σ, τ > 0 we have

gσ ∗ gτ = g√σ2+τ2 .

5. Let f, g ∈ L2
c(R). Prove that∫ ∞

−∞
f(x)ĝ(x) dx =

∫ ∞
−∞

f̂(x)g(x) dx.

6. Let φ be the function with Fourier transform φ̂ = 1√
2π
χ[−π,π]. Show that

the set {φ0,k | k ∈ Z} is orthonormal.

7. Let

H(x) =

 1 0 ≤ x < 1
2

−1 1
2 ≤ x < 1

0 otherwise.



7

(a) Calculate the Fourier transfrom Ĥ.

(b) Show that H is an admissible wavelet.

8. Let ψ be an admissible wavelet. Let φ ∈ L1(R) be a bounded piecewise-
continuous function. Show that the convolution ψ ∗ φ is an admissible
wavelet.

9. Let ψ be an admissible wavelet. Set

ψs,t(x) =
1√
|s|
ψ

(
x− t
s

)
.

Show that
ψ̂s,t(ω) =

√
|s|e−itωψ̂(sω).

Chapter 2

1. Let k ∈ Z. Define a path γk: [0, 1]→ C\{0} by the formula

γk(t) = exp(2πikt).

(a) Let U ⊆ C be an open set containing the unit circle {z ∈ C | |z| = 1}.
Let f :U → C be holomorphic. Show that∮

γk

f(z) dz = k

∮
γ1

f(z) dz.

(b) Calculate Wind(γk, a) in each of the two cases |a| < 1 and |a| > 1.

2. Write down Cauchy’s formula for derivatives.

[Note: This formula is not in the notes; the exercise is to find out what it
is.]

3. (a) Let 0 < r < R, and let f :B(0, R) → C be a holomorphic function.
Let M = sup{|f(z)| | |z| = r}. Use Cauchy’s formula for derivatives
to show that

|f ′(w)| ≤ Mr

(r − |w|)2

for all w ∈ B(0, r).

(b) Use the above to prove Liouville’s theorem.

4. (a) Let p:C → C be a non-constant polynomial (with complex coeffi-
cients). Prove that p(z)→∞ as z →∞.

(b) Let f :C → C be a function. Prove that limz→∞ f(z) = ∞ if and
only if limz→∞

1
f(z) = 0.

(c) Use the above, and Liouville’s theorem to prove the fundamental
theorem of algebra, which states that for every non-constant complex
polynomial p:C → C, there is at least one point z0 ∈ C for which
p(z0) = 0.
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Chapter 3

1. Let A be a unital Banach algebra.

(a) Let x ∈ A, and λ ∈ F. Suppose that ‖x‖ < |λ|. Show that the
element λ− x is invertible.

(b) Show that the set of invertible elements in A is open.

2. (a) Define a bounded linear map R: l2 → l2 defined by the formula

R(a1, a2, a3, . . .) = (0, a1, a2, a3, . . .).

What is the set of eigenvalues of R ?

(b) Find the spectrum of R.

(c) Define a bounded linear map T : l2 → l2 by the formula

T (a1, a2, a3, . . .) = (a1, a2, a3 − 2a1, a4 − 2a2, a5 − 2a3, . . .).

Find the spectrum of T .

[Hint: Use the previous part of the question and the spectral mapping
theorem for polynomials]

Chapter 4

1. (a) Let H be a Hilbert space, and let T :H → H be a bounded linear
map. Prove that the map T is unitary if and only if it is an isometric
isomorphism.

(b) Give an example of an isometry that is not a unitary.

2. Let H be a Hilbert space, and let T :V → V be a bounded linear map.
Show that T is self-adjoint if and only if 〈v, Tv〉 ∈ R for all v ∈ H.

3. Let T :V →W be a linear map between normed vector spaces. Show that
T is compact if and only if for every bounded sequence (xn), the image
(Txn) has a convergent subsequence.

4. Define T : l2 → l2 by

T (a1, a2, a3, . . .) = (a1,
a2
2
,
a3
3
, . . .).

Show that T is a compact self-adjoint operator.

5. Give an example of a self-adjoint bounded linear map on a Hilbert space
without any eigenvalues.
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6. Let a(s, t) = min(s, t) − st. Let A:L2[0, 1] → L2[0, 1] be the bounded
linear map defined by the formula

(Af)(s) =

∫ 1

0

a(s, t)f(t) dt.

(a) Find all non-zero eigenvalues and their associated eigenvectors.

(b) Find ‖A‖.

Chapter 5

1. Let H be a Hilbert space, and let T :H → H be a bounded linear map.
Prove that T [H]⊥ = kerT ∗.

2. (a) Let V be a normed vector space. Let α:V → F be a linear map.
Show that α is continuous if and only if kerα is a closed subspace of
V .

(b) Let V be a Banach space, let A be a closed subspace of V , and let B
be a finite-dimensional subspace of V . Show that the subspace A+B
is closed.

3. (a) Let T : l2 → l2 be defined by the formula

T (a1, a2, a3, . . .) =
(a1

1
,
a2
2
,
a3
3
, . . .

)
.

Prove that T is a bounded linear map, but the image of T is not
closed.

(b) Give an example of two closed subspaces, A and B, of a Hilbert space
H, where the sum A+B is not closed.

4. (a) Let H1 and H2 be a Hilbert spaces, and let T1:H1 → H1 and
T2:H2 → H2 be Fredholm operators. Show that the operator

(T1 ⊕ T2):H1 ⊕H2 → H1 ⊕H2

defined by the formula

(T1 ⊕ T2)(x+ y) = T1(x) + T2(y) x ∈ H1, y ∈ H2

is Fredholm, with index Ind(T1 ⊕ T2) = Ind(T1) + Ind(T2).

(b) Let H be a Hilbert space, and let S:H → H be an invertible linear
map and let T :H → H be a Fredholm operator. Prove that the
composite ST is Fredholm, with Ind(ST ) = Ind(T ).

5. Calculate the index of the Toeplitz operator Tf for the following functions,
f :T→ C\{0}

(a) f(z) = z3 for z ∈ T.

(b) f(z) = exp(iz) for z ∈ T.

(c) f(z) = cos(2z) for z ∈ T.


