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1 The Integers

1.1 Integers, Factors, and Primes

In this chapter, we study the set of integers, Z, which is the set of numbers

{. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

We use the rules of addition and multiplication without comment, as well
as statements such as a < b, meaning an integer a is less than an integer b, and
a ≤ b, meaning an integer a is less than or equal to an integer b.

For an integer a ∈ Z, we define the absolute value, |a|, to be the positive
number we get by ignoring the sign. So, for example, |4| = 4 and | − 3| = 3.

Our main goal in this chapter is to look in detail at how division works for
integer numbers. This is useful in computer arithmetic and codes. We look at
some of these applications in the next chapter.

Definition 1.1 Let a, b ∈ Z. We say that a is a factor of b if we can write
a = kb for some other integer k ∈ Z.

Example 1.2 • 6 = 3× 2, so 3 and 2 are factors of 6.

• There is no integer n for which 6 = 4n, so 4 is not a factor of 6.

• For any integer n ∈ Z, n = 1n, so 1 and n are factors of n.

Algorithmically, a is a factor of b if the remainder when a is divided by b is
0. We return to this point of view in subsection 1.3.

Definition 1.3 A prime number if a positive integer p ≥ 2 whose only factors
are p and 1.

Note that we only consider positive numbers in this definition, and that we
specifically exclude 1 from being a prime number.

Example 1.4 • The only factors of 5 are 5 and 1, so 5 is a prime number.

• 6 = 3× 2, so 3 and 2 are factors of 6, and 6 is not a prime number.

To check whether a number, n, is prime, we can look at every positive integer
2 ≤ k < n and check if it is a factor. If no number 2 ≤ k < n is a factor of n,
then n is a prime number.

This method is costly in computer time for large numbers. There are better
ways of checking, but there is no known algorithm that is both efficient and
always works. Such an algorithm would provide an efficient way of cracking
codes, as we shall see later on.

Definition 1.5 Let a, b ∈ Z. We call an integer h ∈ Z a highest common factor
of a and b, and write h = hcf(a, b) if:
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• h is a factor of a, and h is a factor of b.

• If k is also a factor of both a and b, then k is a factor of h.

The highest common factor of integers a and b is also sometimes called the
greatest common divisor of a and b. However, we only use the term highest
common factor in these notes.

Example 1.6 The integer 4 is a highest common factor of both 12 and 8. So
is −4.

Finding highest common factors of large numbers is both useful and hard.
We will look at how to find highest common factors algorithmically later in this
chapter.

1.2 Proofs by Induction

Recall the principle of induction:

Consider a statement P (n) involving the integer n. If we know that:

• P (1) is true;

• For every integer k ≥ 1, P (k) implies P (k + 1);

then P (n) is true for every integer n ≥ 1.

Here, the number 1 could be replaced by 0, or for that matter any other
integer. Let us give an example.

Proposition 1.7 The sum

1 + 2 + 4 + · · ·+ 2n

is equal to 2n+1 − 1.

Proof: Firstly, recall the mathematical notation for sums: we write

1 + 2 + 4 + · · ·+ 2n =

n∑
j=0

2j

(here we start with k = 0, as 20 = 1).
To prove the statement in the proposition, we work by induction. When

n = 0, the sum is
0∑
j=0

2j = 1.
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On the other hand, in this case,

2n+1 − 1 = 2− 1 = 1

so the result is true when n = 0.
Suppose the result is true when n = k, where k ≥ 0. Then

k∑
j=0

2j = 2k+1 − 1.

But
k+1∑
j=0

2j = 1 + 2 + 4 + · · ·+ 2k + 2k+1 =

k∑
j=0

2j + 2k+1

so, using the result for n = k, we have

k+1∑
j=0

2j = 2k+1 − 1 + 2k+1 = 2(2k+1)− 1 = 2k+2 − 1

so the result is true when n = k + 1.
Hence the result is true for all n ≥ 0 by induction. 2

The following variation of the principle of induction is sometimes called the
principle of strong induction:

Consider a statement P (n) involving the integer n. If we know that:

• P (1) is true;

• For every integer k > 1, P (1), . . . , P (k − 1) all together imply P (k);

then P (n) is true for every integer n ≥ 1.

Again, the number 1 could be replaced by 0, or for that matter any other
integer.

Theorem 1.8 Every integer n ≥ 2 can be expressed as a product of one or
more prime numbers.

Proof: We work by strong induction.
The number 2 is itself a prime number, so the result is true for n = 2.
Let k > 2. Suppose that the result is true whenever n < k.
If k is a prime number, then the result is also true for k. If k is not a prime

number, we can write
k = ab

where 2 ≤ a < k and 2 ≤ b < k. Since a and b are both less than k, they can
be written as a product of prime numbers. Hence k = ab is also a product of
prime numbers, and the result is true when n = k.

5



Therefore, by the principle of strong induction, the result is true for all n ≥ 2.
2

It is in fact true that any integer n ≥ 2 can be written uniquely as a product
of prime numbers, although we have not proved uniqueness here. This result
(with uniqueness) is known as the fundamental theorem of arithmetic.

1.3 Division

The following result is known as the division algorithm. It’s not really an algo-
rithm, but is a step in a number of different algorithms, as we shall see.

Theorem 1.9 Let a, b ∈ Z, with b 6= 0. Then we have a unique quotient q ∈ Z
and remainder r ∈ Z where 0 ≤ r < |b| such that

a = qb+ r.

2

We won’t prove this result here. To understand it, note that the quotient
q is the number we get when we divide a by b; the number r is the remainder.
Observe that b is a factor of a if and only if the above remainder r is zero.

Note that both the quotient and remainder are integers.

Example 1.10 If we divide 12 by 5, we get 2, with remainder 2. In terms of
the division algorithm, we have

12 = 2× 5 + 2.

If we divide 13 by −4, we get −3, with remainder 1. In terms of the division
algorithm, we have

13 = (−3)× (−4) + 1.

Our next result uses a technique called proof by contradiction. In a proof
by contradiction, to prove a statement P , assume that P is not true. We use
the fact that P is not true to arrive at something that is clearly nonsense- a
contradiction. This contradiction means that the thing we assumed is false.
Thus the statement that P is not true is false, ie: P is true.

Theorem 1.11 There are infinitely many prime numbers.

Proof: We prove this result by contradiction. Assume that there are only
finitely many prime numbers. Write them in a list

p1, p2, . . . , pn.

Let
N = p1p2 · · · pn + 1.
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By the above theorem, N must have a factor which is a prime number
(perhaps N itself). By our assumption, the only prime numbers are the ones
in our list, p1, p2, . . . , pn. By the division algorithm, if we divide N by one of
these numbers pi, we have remainder 1, so no pi is a factor of N .

This is a contradiction of our assumption that p1, p2, . . . , pn are the only
prime numbers. So there must be infinitely many prime numbers. 2

1.4 Euclid’s Algorithm

We now present an algorithm to find the highest common factor of two integers.
It is called Euclid’s algorithm.

Theorem 1.12 Let a, b ∈ Z. Write, with the division algorithm

a = q0b+ r0

b = q1r0 + r1

r0 = q2r1 + r2

r1 = q3r2 + r3

...
...

rn−2 = qnrn−1 + rn
rn−1 = qn+1rn.

where 0 ≤ r0 < |b|, and 0 ≤ rk < |rk−1| for all k.
Then rn = hcf(a, b).

To clarify, we keep using the division algorithm, using the above pattern,
until we get a zero remainder. The last non-zero remainder is a highest common
factor of a and b.

If there is no remainder in the first step of the algorithm, we have a = q0b,
meaning b is a factor of a, so the highest common factor of a and b is b itself.

We will come back to the proof. Before we do this, the most interesting
thing is to see an example.

Example 1.13 Find the highest common factor of 630 and 132.

Solution: With repeated use of the division algorithm:

630 = 4× 132 + 102
132 = 1× 102 + 30
102 = 3× 30 + 12
30 = 2× 12 + 6
12 = 2× 6.

The last non-zero is remainder is 6. So 6 = hcf(630, 132).

To see why Euclid’s algorithm works, we need the following lemma.
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Lemma 1.14 Let a = qb+ r. Then hcf(a, b) = hcf(b, r).

Proof: Let h = hcf(b, r). We need to show that h is a highest common factor
of a and b.

• We have b = mh and q = nh for some m,n ∈ Z. Hence

a = qmh+ nh = (qm+ n)h

meaning h is a factor of a. We already know h is a factor of b.

• Let c be a factor of both a and b. Write a = kc and b = lc. Then the
equation a = qb+ r gives us

mc = qnc+ r

that is to say
r = (m− qn)c.

Thus c is also a factor of r. As c is a factor of b, c is a factor of h.

From this, it follows that h = hcf(a, b).
2

Why Euclid’s algorithm works:

Let a, b ∈ Z. Write
a = q0b+ r0

b = q1r0 + r1

r0 = q2r1 + r2

r1 = q3r2 + r3

...
...

rn−2 = qnrn−1 + rn
rn−1 = qn+1rn.

Then by the above,

hcf(a, b) = hcf(b, r0) = hcf(r0, r1) = · · · = hcf(rn−1, rn) = hcf(rn, 0).

Now, notice that:

• rn = 1rn, and 0 = 0rn, so rn is a factor of both rn and 0.

• Let c be a factor of both rn and 0. Then c is certainly a factor of rn.

Hence hcf(rn, 0) = rn. 2
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1.5 Linear Diophantine Equations

In this section we look at solving equations of the form

ax+ by = c

where:

• a, b, c ∈ Z, and at least one of a and b is non-zero.

• We only look for solutions where x, y ∈ Z.

Sometimes we can find solutions to such equations just by trying out different
numbers. This is only recommended if a, b, c are all quite small.

Example 1.15 Find a solution to the equation

3x+ 5y = 1.

Solution: We observe that 2× 5 = 10, which is one more than 3× 3. So

3× (−3) + 5× 2 = 1

and we can take x = −3 and y = 2.

For bigger numbers, we want a more systematic method. First we look at
the special case where c = hcf(a, b). In this case, we can find x, y ∈ Z such that
ax+ by = c. This is best illustrated using an example.

Example 1.16 Find a solution to the equation

630x+ 132y = 6

where x, y ∈ Z.

Solution: To proceed, one first step is to use Euclid’s algorithm:

630 = 4× 132 + 102
132 = 1× 102 + 30
102 = 3× 30 + 12
30 = 2× 12 + 6
12 = 2× 6.

We then look at what we have done and go backwards:

6 = 30− 2× 12
= 30− 2× (102− 3× 30)
= 7× 30− 2× 102
= 7× (132− 102)− 2× 102
= 7× 132− 9× 102
= 7× 132− 9× (630− 4× 132)
= −9× 630 + 43× 132
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So we have a solution x = −9 and y = 29. It is worth quickly checking what
we have found works using a calculator.

Note that in general we will have more than one possible solution. It is also
possible to have no solutions.

Theorem 1.17 Let a, b, c ∈ Z, with at least one of a and b non-zero. Let
h = hcf(a, b). Then the equation

ax+ by = c

has an integer solution if and only if h is a factor of c.

Proof: By the above, there are integers s, t ∈ Z such that

as+ bt = h

Further, we have c = hk, where k ∈ Z. Let x = ks and y = kt. Then

ax+ by = aks+ bkt = k(as+ bt) = kh = c

so in this case we have an integer solution.
On the other hand, suppose we have s, t ∈ Z such that

as+ bt = c.

Then a = kh and b = lh, where k, l ∈ Z, so

c = khs+ lht = h(ks+ lt)

and h is a factor of c. 2

In particular, by the above, if h is not a factor of c, then the equation
ax+ by = c has no integer solutions.

Example 1.18 Consider the equation

12x+ 8y = 1.

Then the highest common factor of 12 and 8 is 4, and 4 is not a factor of of
1, so the equation has no integer solutions by the above.

We can also see this directly. The number on the left of the equation is
always even (indeed, even a multiple of 4), whereas 1 is odd.

Now, if the equation ax+ by = c has any integer solution at all, it will have
lots of integer solutions. We can find all solutions using the following result.

10



Theorem 1.19 Let a, b ∈ Z, with a and b not both zero. Let h = hcf(a, b) Let
s, t ∈ Z be such that as+ bt = h.

Then a pair of integers (x, y) is a solution to the equation ax+ by = h if and
only if we have k ∈ Z such that

x = s+
kb

h
y = t− ka

h
.

Proof: Since h is a factor of a and b, the expressions kb
h and ka

h are integers.
We know that as+ bt = h.

Let x and y be as above. Observe

ax+ by = as+ bt+
kab

h
− kab

h
= as+ bt = h.

Conversely, suppose ax+ by = h. We also know that as+ bt = h, so

a(x− s) + b(y − t) = 0.

Since h is the highest common factor of a and b, a/h and b/h are integers,
and the highest common factor of a

h and b
h is 1.

Rearranging
a

h
(x− s) =

b

h
(t− y)

so a
h is a factor of b

h (t− y).

Since the highest common factor of a
h and b

h is 1, this means that a
h is a

factor of t− y, so we have k ∈ Z where

t− y =
ka

h

that is

y = t− ka

h
.

But we know that a(x− s) + b(y − t) = 0. Rearranging, this means that

a(x− s) =
kab

h

and so

x = s+
kb

h
.

This completes the proof. 2

The set
S = {(x, y) | ax+ by = c, x ∈ Z, y ∈ Z}

is called the general solution to the equation ax + by = c. The work in this
section gives us a procedure for finding the general solution to the equation
ax+ by = c:
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• Use Euclid’s algorithm to find the highest common factor, h.

• Is h a factor of c ? If not, the equation has no integer solutions. The
general solution is the empty set, ∅.

• If h is a factor of c, run Euclid’s algorithm backwards to find integers
s, t ∈ Z such that as+ bt = h.

• The equation ax+by = c then has a particular solution x = cs/h, y = ct/h,
where s and t are as above.

• The general solution to the equation ax+ by = c is given by

x =
cs

h
+
kb

h
y =

ct

h
− ka

h
k ∈ Z.

This seems like a lot to remember, but the keys are the use of Euclid’s
algorithm to find a particular solution, and proceeding to a particular solution.
Most of the rest is common sense. Let us try with an example.

Example 1.20 Find the general solution to the equation

1071x+ 462y = 42.

where x, y ∈ Z.

Solution:

• We use Euclid’s algorithm to find the highest common factor of 1071 and
462:

1071 = 2× 462 + 147
462 = 3× 147 + 21
147 = 7× 21

So hcf(1071, 462) = 21.

• 21 is a factor of the right-hand side, 42, so we do have some solutions.

• Consider the equation
1071x+ 462y = 21.

Running Euclid’s algorithm backwards, we see

21 = 462− 3× 147
= 462− 3× (1071− 2× 462)
= −3× 1071 + 7× 462

So we have a particular solution x = −3, y = 7 to 1071x+ 462y = 21.

• Doubling, we have a particular solution x = −6, y = 14 to 1071x+462y =
42. Hence we have the general solution

x = −6 +
462k

21
= −3 + 22k y = 14− 1071k

21
= 14− 51k

where k ∈ Z.
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2 The Integers Modulo n

2.1 Modular Arithmetic

Definition 2.1 Let m ≥ 2 be an integer. Then we say a, b ∈ Z are equivalent
modulo m if a and b leave the same remainder when divided by m. In this case,
we write

a ≡ b mod m.

By the division algorithm, a ≡ b mod m if and only if there is an integer
k ∈ Z such that

a = mk + b,

ie: m is a factor of a− b.
We can represent all numbers modulo m by numbers in the set

{0, 1, 2, . . . ,m− 1},

ie: any integer is congruent to one (and only one) of these numbers module m.

Example 2.2

• 13 and 1 leave the same remainder when divided by 6. So 13 ≡ 1 mod 6.

• 5× 8 + 3 = 43. So 43 ≡ 3 mod 5.

• 0 ≡ 20 mod 10.

• 13 ≡ 18 mod 5.

• −2 ≡ 5 mod 7.

• All odd numbers are congruent to each-other modulo 2.

Addition and multiplication can be performed modulo m.

Proposition 2.3 Let a1 ≡ a2 mod m, and b1 ≡ b2 mod m. Then a1 + b1 ≡
a2 + b2 mod m, and a1a2 ≡ b1b2 mod m.

Proof: We know that m is a factor of a1 − a2, and of b1 − b2. Hence, m is a
factor of

(a1 − a2) + (b1 − b2) = (a1 + b1)− (a2 − b2).

But this means that a1 + b1 ≡ a2 + b2 mod m.
Now, observe

a1b1 − a2b2 = a1b1 − a1b2 + a1b2 − a2b2 = a1(b1 − b2) + +b2(a1 − a2).

Since m is a factor of b1 − b2, and a1 − a2, we have that m is a factor of
a1b1 − a2b2. This means that a1a2 ≡ b1b2 mod m. 2

Usually when performing arithmetic modulo m, we arrange things so that
we get an answer in the range {0, 1, . . . ,m− 1}.
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Example 2.4

Working modulo 12:
11 + 3 ≡ 14 ≡ 2 mod 2.

This should be familiar from telling the time. The time 3 hours after 11
o’clock is of course 2 o’clock. Yes- telling the time is arithmetic modulo 12.

Working modulo 7:
6× 5 ≡ 30 ≡ 2 mod 7.

Division, however, is not something we can assume. Nor is cancelling factors
to solve equations. This is something we explore next.

2.2 Solving Equations

Suppose we want to divide b by a modulo m. This means finding x such that

ax ≡ b mod m.

The modular equation means that

ax+my = b y ∈ Z.

But this is a linear Diophantine equation, with x and y as unknowns (with x
the one we’re really interested in). We know how to solve such equations from
our work in the previous chapter.

Example 2.5 Solve
35x ≡ 21 mod 91.

Solution:

• Write this equation
35x+ 91y = 21

where x, y ∈ Z.

• Perform Euclid’s algorithm to find hcf(91, 35):

91 = 2× 35 + 21
35 = 21 + 14
21 = 14 + 7
14 = 2× 7

So hcf(91, 35) = 7.

• 7 is a factor of the right-hand side, 21, so we have some solutions.

14



• Consider the equation
35x+ 91y = 7

Running Euclid’s algorithm backwards, we see that

7 = 21− 14
= 21− (35− 21)
= 2× 21− 35
= 2× (91− 2× 35)− 35
= 2× 91− 5× 35

So the equation
35x+ 91y = 7

has a particular solution
x = −5, y = 2.

Hence the equation 35x + 91y = 21 has the particular solution x = −15,
y = 6, and so general solution

x = −15 +
91k

7
= −15 + 13k y = 6− 35k

7
= 6− 5k

where k ∈ Z.

• Going back to the modular equation, our original equation

35x ≡ 21 mod 91

has general solution

x = −15 + 13k k ∈ Z.

In other words, x ≡ −15 mod 13, ie: x ≡ 2 mod 13.

Looking for solutions in the range

{0, 1, 2, . . . , 90}

we see that we have possible solutions

x ≡ 2, 15, 28 mod 39.

• Finally, we should use a calculator to check our answers. We want, in the
fact case, to check that 2× 35 differs from 21 by a multiple of 9, ie: that
((2× 35)− 21)/9 is an integer.

The check in the other cases are similar. Doing this here, fortunately
everything works, so we haven’t made a mistake- phew!
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Notice that we got three answers when solving the equation 35x ≡ 21
mod 91. It is possible that we have one, more than one or no answer when
trying to solve this problem.

Example 2.6 Solve
4x ≡ 1 mod 6.

Solution:
We might see immediately that no even number can possibly be equivalent

to 1 modulo 4, so that this equation has no solution. If we see that, we’ve saved
time.

But if we didn’t see that immediately, we could follow the formal procedure.

• Write our equation
4x+ 6y = 1 x, y ∈ Z

• By Euclid’s algorithm (or just spotting it), hcf(4, 6) = 2.

• 2 is not a factor of the right-hand side, 1. So the equation has no solutions.

The following result gives a condition under which we have a unique solution
to our equation.

Theorem 2.7 Let p be a prime number. Let a ∈ {1, . . . , p − 1}, b ∈ Z. Then
the equation

ax ≡ b mod p

has a unique solution modulo p.

Proof: Following our usual procedure, first note that we want to solve the
equation

ax+ py = b x, y ∈ Z.

Since p is prime, and a ∈ {1, . . . , p− 1}, we have 1 = hcf(a, p). The number
1 is certainly a factor of b, so the equation has solutions.

Running Euclid’s algorithm backwards, we can pick out s, t ∈ Z such that
as+ pt = 1. The general solution to the equation ax+ py = b is then

x = bs+ kp y = bt− ka k ∈ Z.

We see immediately that x ≡ bs mod p. This is (modulo p) the only solution
to our original equation, as required. 2
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2.3 The Chinese Remainder Theorem

The result we are here calling the Chinese remainder theorem was originally
stated in the 3rd century AD by the Chinese mathematician Sun Zi, and gen-
eralised in the 13th century by Qin Jiushao.

In modern language, the result is as follows.

Theorem 2.8 Let m,n ≥ 2, with hcf(m,n) = 1. Let a, b ∈ Z. Then we have
x ∈ Z such that the equations

x ≡ a mod m x ≡ mod n

both hold. Further, this x is unique modulo mn. 2

In other words, the two equations

x ≡ a mod m x ≡ mod n

have a solution, and this solution is unique modulo mn.

Definition 2.9 We call two integers a and b coprime if hcf(a, b) = 1, ie: they
have no common factors other then 1.

To see how to compute this solution, we (as usual) convert to a linear Dio-
phantine equation. To see how to do this, consider the following example.

Example 2.10 Find all solutions x ∈ Z to the simultaneous equations

x ≡ 1 mod 3 x ≡ 2 mod 5.

Solution: We solve
x = 1 + 3k x = 2 + 5l

where x, k, l ∈ Z.
Combining these equations

1 + 3k = 2 + 5l

so
3k − 5l = 1

where k, l ∈ Z. Observe that k = 2 and l = 1 is a particular solution- if we
don’t spot this, we could find it using our usual Euclid’s algorithm technieque.

Hence, as usual, the general solution is

k = 2− 5n l = 1− 3n n ∈ Z.

So
x = 1 + 3(2− 5n) = 7− 15n n ∈ N

We conclude that
x ≡ 7 mod 15.
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2.4 Fermat’s Little Theorem

The result known as Fermat’s little theorem involves prime numbers and con-
gruences. It was discovered in the 17th century by the lawyer and amateur
mathematician Pierre de Fermat. We call it Fermat’s little theorem to distin-
guish it from the more famous (and much harder to prove) result that is Fermat’s
Last Theorem.

Theorem 2.11 Let p be a prime number. Let a ∈ Z. Then

ap ≡ a mod p.

Proof: In this proof, we assume a ≥ 1. We can then deduce the other cases.
We work by induction on a. First of all, note that the result is clear when

a = 1.
Suppose that the result is true for a, so that

ap ≡ a mod p.

We need the corresponding formula for a + 1. Observe, by the binomial
theorem

(a+ 1)p = ap + pap−1 +
1

2
p(p− 1)ap−2 + · · ·+ pa+ 1.

Now, any of the above terms with a factor of p are congruent to 0 modulo
p. Hence

(a+ 1)p ≡ ap + 1 ≡ a+ 1 mod p

and we are done. 2

Corollary 2.12 Let p be a prime number. Let a ∈ Z be such that p is not a
factor of a. Then

ap−1 ≡ 1 mod p.

Proof: Let x = ap−1. By Fermat’s little theorem, we know that

ax ≡ ap ≡ a mod p.

By theorem 2.7, we know that there is a unique value of x modulo p which
solves this equation. Certainly, x = 1 is a solution. So by uniqueness, x ≡ 1
mod p. By we know that x = ap−1, so

ap−1 ≡ 1 mod p

and we are done. 2

We also refer to the above corollary as Fermat’s Little Theorem.
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Example 2.13 Find 372 mod 55.
Solution:

• First we factor 55 into a product of prime numbers, each of which we we
can work on with Fermat’s little theorem. This is a case of straightforward
checking of factors; here, we have 55 = 11 × 5, and 11 and 5 are prime
numbers.

• We now work out 372 mod 11. To do this, we apply Fermat’s little theo-
rem with p = 11. Doing this, we know

310 ≡ 1 mod 11.

Now
72 = 7× 10 + 2

so
372 = (310)7 × 32.

By the above, we have

372 ≡ 32 ≡ 9 mod 11.

• Now we work out 372 mod 5. Apply Fermat’s little theorem with p = 5.
Then

34 ≡ 1 mod 5.

Now
72 = 18× 4

so
372 ≡ (34)18 ≡ 1 mod 5

• Let x = 372. We know

x ≡ 9 mod 11 x ≡ 1 mod 5.

By the Chinese remainder theorem, we know there is a unique solution of
x modulo 55. If we find it, that is our answer.

As usual, we can write these equations

x = 9 + 11k x = 1 + 5l

k, l ∈ Z. Hence 9 + 11k = 1 + 5l, and

11k − 5l = 1− 9 = −8.

By inspection, we spot a solution k = 2, l = 6. If we can’t spot a solution in
this way (because the numbers are too large), we could have used Euclid’s
algorithm.

Plugging this in, we see that our solution is

x ≡ 9 + (11× 2) ≡ 31 mod 55.
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2.5 RSA Cryptography

RSA is an algorithm, named after its inventors, Rivest, Shamir and Adleman.
It is used to send secret messages that are encoded using a widely known public
key, but can only be decoded using a secret private key.

There are three steps to RSA cyptography- key generation, encryption, and
decryption.

Key Generation

• Choose two prime numbers p and q and compute n = pq.

• Pick e ∈ Z such that 1 < e < (p− 1)(q − 1), and e and (p− 1)(q − 1) are
coprime.

• Find d > 0 such that

de ≡ 1 mod (p− 1)(q − 1).

The pair (n, e) is the public key for encryption. The number d is the private
key, and is used, along with n for decryption.

The security of the RSA algorithm rests on the fact that knowing just n and
e, it is very hard to find d; there is no efficient computer algorithm to do this
when the prime numbers p and q are large.

Part of finding d from n and e is finding the prime numbers p and q such
that n = pq. If n is a very large number, this is a hard problem to solve with
currently known algorithms, potentially taking hours or even weeks of computer
time.

Encryption

To send a secret message:

• Represent the message (or perhaps an individual letter of the message) by
an integer, M , such that 0 ≤M < n.

• Find c < n such that c ≡Me mod n.

• Transmit the number c.

Decryption

Decoding an encrypted message c means finding M if we know c.
If we know the private key, d, we can do this using the following result.

Theorem 2.14 cd ≡M mod n.
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Proof: Recall c ≡Me mod n. Observe

cd ≡Mde mod n.

Recall that de ≡ 1 mod (p− 1)(q − 1), so

de = 1 + k(p− 1)(q − 1)

for some k ∈ Z, meaning

Mde = M × (M (p−1)(q−1))k.

By Fermat’s little theorem

Mp−1 ≡ 1 mod p Mq−1 ≡ 1 mod q

so, by the above

Mde ≡M mod p Mde ≡M mod q

By the Chinese remainder theorem, the pair of equations

x ≡M mod p x ≡M mod q

has a unique solution modulo n = pq. We conclude

Mde ≡M mod n

so cd ≡M mod n and we are done. 2

Example 2.15
Solution:

• Choose prime numbers p = 61 and q = 53. We compute n = pq =
61× 53 = 3233.

• We have (p − 1)(q − 1) = (61 − 1)(53 − 1) = 3120. Choose 1 < e < 3120
such that e and 3120 are coprime. Let us pick e = 17.

• Find d > 0 such that de ≡ 1 mod 3120.

Using our usual methods to solve such equations, we find d = 2753.

So our public key is (n, e) = (3233, 17). Our private key is d = 2753.
So we encrypt using the function E : {0, . . . , n − 1} → {0, . . . , n − 1} given

by
c = E(M) ≡M17 mod 3223.

We decrypt using the function D : {0, . . . , n− 1} → {0, . . . , n− 1} given by

M = D(c) ≡ c2753 mod 3223.
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For instance, in order to encrypt M = 65, we calculate

c ≡ 6517 mod 3223

which is, using the techniques of the previous section, 2790 modulo 3223.
To decrypt c = 2790, we calculate

M ≡ 27902753 mod 3223

which is, using the techniques of the previous section, 65.
The code is secure, as knowing just n = 3223 and e = 17, it is very hard to

find d = 2753 which we need to decrypt.
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3 Matrices, Vectors and Systems of Linear
Equations

3.1 Elementary Row Operations

In contrast to the previous two sections, we are now going to work over the set
of real numbers, R, rather than the set of integers. The real numbers includes
all integers, fractions, and irrational numbers such as

√
2 and π. It does not

include imaginary numbers such as i =
√
−1.

Consider a system of m linear equations in n variables,

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm

where aij , bj ∈ R are fixed known real numbers, and the xi ∈ R are the unknown
variables we want to find.

To solve the system means finding all possible values of the variables xi. A
system of linear equations could have one solution, more than one solution, or
no solutions; there are examples of each type.

Example 3.1 Solve the simultaneous equations

2x− 4y = 4
−3x+ 4y = 2

Solution:
Working formally, we:

• Multiply the first equation by 1
2 :

x− 2y = 2
−3x+ 4y = 2

• Add three times the first equation to the second equation:

x− 2y = 2
−2y = 8

• Multiply the second equation by − 1
2 :

x− 2y = 2
y = −4
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• Add two times the second equation to the first equation:

x = −6
y = −4

In the above example, everything is straightforward. For examples with
more equations and variables, things get more complex- it is useful to formalise
the process of solving these equations and have an algorithm.

Definition 3.2 An m× n matrix of real numbers is an array

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn


An augmented matrix is an array of the form

(A|b) =


a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
...

...
am1 am2 . . . amn bm


The above augmented matrix is called the matrix of the system of linear

equations

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm

Example 3.3 The system of linear equations

2x− 4y = 4
−3x+ 4y = 2

is represented by the augmented matrix(
2 −4 4
−3 4 2

)
Now, notice that when solving a system of linear equations, there are some

operations we can perform to try to simplify it and find a solution. Specifically,
we can:

• Swapping two equations
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• Multiply one equation by a non-zero real number.

• Add (or subtract) a multiple of one equation from another (different)
equation.

None of these operations changes the solution of a system of linear equations,
and the idea is to perform them until our system is in such a state that we can
just ’read off’ a solution; we saw this in our above example.

Definition 3.4 An elementary row operation (ERO) on a matrix is one of the
following three things:

• Swapping two rows of the matrix.

• Multiplication of one row of the matrix by a non-zero number.

• The addition or subtraction of a multiple of one row of the matrix to
another (different) row.

We write C ∼ D if we obtain the matrix D by performing a finite number
of EROs on C.

Remark 3.5 The elementary row operations are all reversible. So if C ∼ D,
then D ∼ C. In fact, ∼ is an equivalence relation.

The following result is clear from our remarks, and is the key to solving
systems of linear equations using EROs.

Theorem 3.6 Consider a system of linear equations with augmented matrix
(A|b). Suppose (A|b) ∼ (A′|b′). Then the system of linear equations with aug-
mented matrix (A′|b′)′ has the same solutions. 2

In other words, we write down our system in matrix form, and perform
elementary row operations until we can read off a solution.

Example 3.7 Solve the system of linear equations

x− y + 2z = 1
2x+ y − z = 1
x− 2y + z = 1

Solution:
This system has matrix:  1 −1 2 1

2 1 −1 2
1 −2 1 1


Now we perform EROs:
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• Subtract twice row 1 from row 2, and subtract row 1 from row 3: 1 −1 2 1
2 1 −1 2
1 −2 1 1

 ∼
 1 −1 2 1

0 3 −5 −1
0 −1 −1 0


• Swap row 2 and row 3, then multiply row 2 by −1:

∼

 1 −1 2 1
0 1 1 0
0 3 −5 −1


• Subtract 3 times row 2 from row 3:

∼

 1 −1 2 1
0 1 1 0
0 0 −8 −1


• Multiply row 3 by −1/8:

∼

 1 −1 2 1
0 1 1 0
0 0 1 1

8


• Subtract row 3 from row 2, and twice row 3 from row 1:

∼

 1 −1 0 3
4

0 1 0 − 1
8

0 0 1 1
8


• Add row 2 to row 1:

∼

 1 0 0 5
8

0 1 0 − 1
8

0 0 1 1
8


We can now convert back into a system of linear equations and read off the

solutions:
x = 5

8
y = − 1

8
z = 1

8

3.2 General Solutions

In the examples we have seen so far, our systems of linear equations have had
a unique solution. It is also possible for a system of linear equations to have
many solutions, or no solution.
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Given a system of linear equations,

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm

the set of all possible ordered sets, (x1, . . . , xn), for which the above equations
are all true is called the general solution.

Example 3.8 Consider the system of linear equations

v + 2w − 3x+ 3y + 2z = 0
−v − w + 3x+ z = 3

v + 2w + y = 1
−v − w + 4y + 5z = 4

v + 2w + x+ 7y + z = 8

Solution:
The system has augmented matrix

(A|b) =


1 2 −3 3 2 0
−1 −1 3 0 1 3
1 2 0 1 0 1
−1 −1 0 4 5 4
1 2 1 7 6 8

 .

(A|b) ∼


1 2 −3 3 2 0
0 1 0 3 3 3
0 0 3 −2 −2 1
0 1 −3 7 7 4
0 0 4 4 4 8

 ∼


1 2 −3 3 2 0
0 1 0 3 3 3
0 0 3 −2 −2 1
0 0 −3 4 4 1
0 0 1 1 1 2



∼


1 2 −3 3 2 0
0 1 0 3 3 3
0 0 1 1 1 2
0 0 −3 4 4 1
0 0 3 −2 −2 1

 ∼


1 2 −3 3 2 0
0 1 0 3 3 3
0 0 1 1 1 2
0 0 0 7 7 7
0 0 0 −5 −5 −5



∼


1 2 −3 3 2 0
0 1 0 3 3 3
0 0 1 1 1 2
0 0 0 1 1 1
0 0 0 0 0 0

 ∼


1 0 −3 −3 −4 −6
0 1 0 3 3 3
0 0 1 1 1 2
0 0 0 1 1 1
0 0 0 0 0 0



∼


1 0 0 0 −1 0
0 1 0 3 3 3
0 0 1 1 1 2
0 0 0 1 1 1
0 0 0 0 0 0

 ∼


1 0 0 0 −1 0
0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 1 1
0 0 0 0 0 0

 ,
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Converting back to equations:

v − z = 0
w = 0
x = 1

y + z = 1
0 = 0

The final equation ’0 = 0’ doesn’t tell us anything, so we ignore it. Now,
to work out the general solution, we work backwards through the variables,
starting with z and the bottom equation. If we don’t know what a variable is,
we set it to be an arbitrary real number. We denote such arbitrary numbers by
letters in the Greek alphabet, α, β, γ, . . ..

So, above, we can’t determine z. Set z = α where α ∈ R. Substitute this
into the other equations. Then we get y = 1− α, x = 1, w = 0, and v = z = α.
So we have general solution

v = α
w = 0
x = 1
y = 1− α
z = α

α ∈ R.

Example 3.9 Solve the system of linear equations

2x + y + z = 1
4x + 2y + 3z = −1
6x + 3y − z = 11

.

Solution:
The augmented matrix of this system is 2 1 1 1

4 2 3 −1
6 3 −1 11

 ∼
 2 1 1 1

0 0 1 −3
0 0 −4 8


∼

 2 1 1 1
0 0 1 −3
0 0 0 −4

 ∼
 2 1 0 0

0 0 1 0
0 0 0 1


Going back to equations, the last matrix gives us:

x+ y = 0
z = 0
0 = 1

The final equation ‘0 = 1’ can never be satisfied- it is nonsense. This means
that our system of linear equations does not have any solutions. Getting the
equation ’0 = 1’ or something similar is what always happens with this method
when a system of equations can’t be solved.

In other words, there is no x, y and z satisfying the original three equations.
Our general solution is the empty set.

28



3.3 Reduced Echelon Form

Our aim in this section is to express our method of solving linear equations as
a formal algorithm.
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Definition 3.10 A matrix is said to be in reduced echelon form if:

• Any rows consisting entirely of zeros are below the other rows.

• The leading entry in any non-zero row is a 1, and the leading 1 is in a
column to the right of the leading 1 of the row above it.

• Each leading 1 is the only non-zero entry in its column.

Example 3.11 The following matrices are in reduced echelon form:

 1 0 0 43
0 1 0 −2
0 0 1 4




0 1 2 0 0 0 −1 1 0 5
0 0 0 1 0 0 2 3 0 4
0 0 0 0 1 0 −2 −3 0 3
0 0 0 0 0 1 −1 −1 0 2
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


.

We can easily read off the solution of a system of linear equations whose
matrix is in reduced echelon form.

Example 3.12 Consider a system of linear equations in variables x, y, z with
augmented matrix  1 0 0 43

0 1 0 −2
0 0 1 4


Then we have solution

x = 43, y = −2, z = 4.

Example 3.13 Consider a system of linear equations in variables x1, x2, . . . , x9

with augmented matrix

0 1 2 0 0 0 −1 1 0 5
0 0 0 1 0 0 2 3 0 4
0 0 0 0 1 0 −2 −3 0 3
0 0 0 0 0 1 −1 −1 0 2
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


.

Then we have corresponding equations

x2 + 2x3 − x7 + x8 = 5
x4 + 2x7 + 3x8 = 4
x5 − 2x7 − 3x8 = 3
x6 − x7 − x8 = 2

x9 = 1
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Then we have general solution (reading from the last variable upwards):

x9 = 1
x8 = α
x7 = β
x6 = 2 + α+ β
x5 = 3 + 3α+ 2β
x4 = 4− 3α− 2β
x3 = γ
x2 = 5− α+ β − 2γ
x1 = δ

where α, β, γ, δ ∈ R.
Note that the variables corresponding to the leading 1’s are determined by

the other variables. Those not corresponding to the leading 1’s, we set to be
arbitrary real numbers in the general solution.

So, if we can transform a matrix into reduced echelon form, we can just read
off the solution of the corresponding system of linear equations.

The proof of our next result is just as important as the statement.

Theorem 3.14 Any matrix can be put into reduced echelon form by a finite
sequence of elementary row operations.

Proof: Let

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn


be an m × n matrix of real numbers. Note that aij is the entry of A in row i
and column j . We present an algorithm to put A into reduced echelon form by
elementary row operations.

Start with i = 1, j = 1.

• If aij = 0, swap row i with some other row below it to ensure that aij 6= 0.
If all entries in column j are zero, increase j by 1.

• Multiply row i by 1/aij to make the leading entry 1.

• Eliminate all other entries in column j by subtracting multiples of row i
from the other rows.

• Increase i and j by 1, and return to the first step.

The algorithm stops when we are done with the last row or column of the
matrix. 2
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3.4 Vectors and Linear Transformations

Definition 3.15 An n-dimensional vector is an n× 1 matrix of real numbers.
We write Rn to denote the set of n-dimensional vectors.

Example 3.16 
1
− 1

2
2
0

 ∈ R4

is an example of a 4-dimensional vector.

We think of a vector as representing a point in n-dimensional space. We say
that two vectors are equal precisely when their corresponding entries are equal.

Definition 3.17 Let

u =


u1

u2

...
un

 , v =


v1

v2

...
vn

 ∈ Rn.

Then we define the sum u+ v to be the vector

u+ v =


u1 + v1

u2 + v2

...
un + vn

 .

Given a real number α ∈ R, we define the scalar multiple αu to be the vector

αu =


αu1

αu2

...
αun

 .

We also define

u− v = u+ (−1)v =


u1 − v1

u2 − v2

...
un − vn

 .

Example 3.18 Consider the vectors(
1
2

)
,

(
−1
1

)
∈ R2.
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Then (
1
2

)
+ 3

(
−1
1

)
=

(
−2
5

)
.

Recall that for sets A and B, a function f : A→ B is a rule which sends an
element a ∈ A to an element f(a) ∈ B.

Definition 3.19 A linear transformation is a function T : Rm → Rn such that

T (αu+ βv) = αT (u) + βT (v)

for all α, β ∈ R and u, v ∈ Rm.

Example 3.20 We can define a linear transformation T : R2 → R3 by writing

T

(
x
y

)
=

 x
x+ 3y
2x− y

 .

Definition 3.21 Let

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn

 v =

 v1

v2

...vn


be an m × n matrix of real numbers and an n-dimensional vector respectively.
Then we define the product Av ∈ Rm by:

Av =


a11v1 + a12v2 + · · ·+ 11nvn
a21v1 + a22v2 + · · ·+ 12nvn

...
am1v1 + am2v2 + · · ·+ 1mnvn

 .

Example 3.22 Let

A =

(
1 2 0
−1 1 3

)
v =

 1
2
−1

 .

Then

Av =

(
1× 1 + 2× 2 + 0× (−1)
−1× 11× 2 + 3× (−1)

)
=

(
5
−2

)
.

Using the above, a system of linear equations

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm
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can be written as a single equation involving vectors. To be precise, let

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn

 b =

 b1
b2

...bm

 .

Let us write the variables x1, x2, . . . , xn as a vector

X =

 x1

x2

...xn

 .

Then the system of linear equations is satisfied if and only if the vector
equation

AX = b

holds. We will sometimes use this compact notation.
The following result is obtained by carefully checking the relevant definitions.

The proof is not very interesting, so we leave it out.

Theorem 3.23 Let A be an m× n matrix of real numbers. Then the function
which sends v ∈ Rn to Av ∈ Rm is a linear transformation.

Further, if T : Rn → Rm is a linear transformation, then there is a matrix
B such that T (v) = Bv for all v ∈ Rn. 2

We call the above matrix B the matrix associated to the linear transforma-
tion.

Example 3.24 Consider the linear transformation T : R2 → R3 by writing

T

(
x
y

)
=

 x
x+ 3y
2x− y

 .

Let

A =

 1 0
1 3
2 −1

 [v =

(
x
y

)
.

Then

Av =

 x
x+ 3y
2x− y

 = T (v).
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3.5 Linear Independence

The concept of linear independence is central in linear algebra, and will prove
useful to us later on.

Definition 3.25 We call a set of vectors {v1, . . . , vr} in Rn linearly independent
if the only solution to the equation

α1v1 + · · ·+ αrvr αi ∈ R

is given by α1 = 0, α2 = 0, . . . , αr = 0.

Example 3.26 Consider the vectors

v1 =

 1
2
1

 v2 =

 1
0
1

 v3 =

 1
1
0


in R3. Is the set of vectors {v1, v2, v3} linearly independent ?

Solution:
Consider the equation

α1v1 + α2v2 + α3v3 = 0.

Looking at entries of the vector, this is a system of linear equations

α1 + α2 + α3 = 0
2α1 + α3 = 0
α1 + α2 = 0

This system has augmented matrix 1 1 1 0
2 0 1 0
1 1 0 0

 ∼
 1 1 1 0

0 −2 −1 0
0 0 −1 0



∼

 1 1 1 0
0 1 1

2 0
0 0 1 0

 ∼
 1 0 0 0

0 1 0 0
0 0 1 0


So the only solution is

α1 = 0 α2 = 0 α3 = 0.

We conclude that the vectors v1, v2, v3 are linearly independent.
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Example 3.27 Consider the vectors

v1 =

 1
2
2

 v2 =

 1
0
2

 v3 =

 0
1
0


in R3. Is the set of vectors {v1, v2, v3} linearly independent ?

Solution: Consider the equation

α1v1 + α2v2 + α3v3 = 0.

Looking at entries of the vector, this is a system of linear equations

α1 + α2 = 0
2α1 + α3 = 0

2α1 + 2α2 = 0

This system has augmented matrix 1 1 0 0
2 0 1 0
2 2 0 0

 ∼
 1 1 0 0

0 −2 1 0
0 0 0 0



∼

 1 1 0 0
0 1 − 1

2 0
0 0 0 0

 ∼
 1 0 1

2 0
0 1 − 1

2 0
0 0 0 0


So we have the general solution α3 = α, α2 = 1

2α, and α1 = − 1
2α, where

α ∈ R.
In particular, we have non-zero solutions. This means the set of vectors

{v1, v2, v3} is not linearly independent.

Sometimes, it is obvious when a set of vectors is not linearly independent.

Example 3.28 Consider the vectors

v1 =

(
1
−1

)
v2 =

(
−2
2

)
Then v2 = −2v1. This means that 2v1 + v2 = 0. So the equation α1v1 +

α2v2 = 0 has a non-zero solution. This means that the set {v1, v2} is not linearly
independent.

However, if not obvious, we can always use the above procedure to check.
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4 Matrix Algebra

4.1 Matrix Multiplication

Just as for vectors, we can form the sum of two m× n matrices by adding the
relevant entries.

Example 4.1(
1 2
3 4

)
+

(
0 2
1 −1

)
=

(
1 + 0 2 + 2
3 + 1 4− 1

)
=

(
1 4
4 3

)
.

Similarly, given a real number α ∈ R, and an m×n matrix A, we define the
scalar multiple αA to be the matrix obtained by multiplying each entry of the
matrix A by α.

Example 4.2

2

(
1 2
3 4

)
=

(
2 4
6 8

)
.

However, we can also multiply matrices together of the appropriate size. The
method for doing this is a generalisation of the method for multiplying a matrix
and a vector.

Definition 4.3 Let

A =


a11 a12 . . . a1r

a21 a22 . . . a2r

...
...

...
am1 am2 . . . amr

 B =


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
...

br1 br2 . . . brn


be an m× r and a r×n matrix respectively. Then we define the product AB to
be the m× n matrix, where the entry cij in row i and column j is the sum

cij =

n∑
k=1

aikbkj .

Note that multiplication of a matrix by a vector is a special case of this
definition. Note that the number of columns of A must be the same as the
number of rows of B for the product AB to make sense.

Example 4.4 Let

A =

(
1 2 3
−2 1 0

)
B =

 1 −1
2 1
1 2

 .
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Then

AB =

(
1× 1 + 2× 2 + 3× 1 1× (−1) + 2× 1 + 3× 2

(−2)× 1 + 1× 2 + 0× 1 (−2)× (−1) + 1× 1 + 0× 2

)
=

(
8 7
0 3

)
and

BA =

 1× 1 + (−1)× (−2) 1× 2 + (−1)× 1 1× 3 + (−1)× 0
2× 1 + 1× (−2) 2× 2 + 1× 1 2× 3 + 1× 0
1× 1 + 2× (−2) 1× 2 + 2× 1 1× 3 + 2× 0

 =

 3 1 3
0 5 6
−3 4 3

 .

Remark 4.5 Matrix multiplication is NOT in general commutative, that is to
say for matrices A and B, in general AB 6= BA (even when, as above, both
products make sense). This is different to the case of multiplication of real
numbers or integers.

The reason to multiply matrices is that it corresponds to composition of
linear transformations. To be precise, we have the following result.

Theorem 4.6 Let S : Rr → Rm and T : Rn → Rr be linear transforma-
tions, with associated matrices A and B respectively. Then the composition
S ◦ T : Rn → Rm has associated matrix AB. 2

Example 4.7 As above, let

A =

(
1 2 3
−2 1 0

)
B =

 1 −1
2 1
1 2

 .

Define S : R3 → R2 by S(v) = Av. Define T : R2 → R3 by T (v) = Bv. Then

S

 x
y
z

 =

(
x+ 2y + 3z
−2x+ y

)
T

(
u
v

)
=

 u− v
2u+ v
u+ 2v

 .

Observe

ST

(
u
v

)
=

(
(u− v) + 2(2u+ v) + 3(u+ 2v)

−2(u− v) + (2u+ v)

)
=

(
8u+ 7v

3v

)
.

But, by the previous example

AB =

(
8 7
0 3

)
which is the matrix associated to the linear transformation R : R2 → R2 given
by

R

(
u
v

)
=

(
8u+ 7v

3v

)
.

But this is the linear transformation S ◦ T . In other words, as claimed in
the theorem, the matrix associated to S ◦ T is AB.
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4.2 Inverses

Now, let us concentrate on square matrices, that is to say n × n matrices for
some n. Any such matrix has the same number of rows and columns, and we can
multiply two square matrices of the same size together. A linear transformation
T : Rn → Rn has an associated n× n matrix.

Definition 4.8 The n× n matrix

In =


1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
...

0 0 . . . 1 0
0 0 . . . 0 1

 .

is called the identity matrix.

We sometimes write just I instead of In. The reason for this name is the
following result, which is easy to check.

Proposition 4.9 Let J : Rn → Rn be the identity linear transformation, de-
fined by the formula J(v) = v for all v ∈ Rn. Then J has associated matrix In.
2

Proposition 4.10 Let A be an n× n matrix. Then AIn = InA = A.

Proof: Let A be associated to the linear transformation T : Rn → Rn. Then
T ◦ J = J ◦ T = T . Hence, looking at the associated matrices, as matrix
multiplication corresponds to composition of linear transformations

AIn = InA = A.

2

Definition 4.11 We call an n× n matrix A invertible if there is a matrix A−1

such that AA−1 = A−1A = In.

We call A−1 the inverse of A. If A is invertible, the inverse is unique. We
now present an algorithm to find it. This method is called Gaussian elimination.

Theorem 4.12 Let A be an n×n matrix. Consider the ’double matrix’ (A|In)
defined by writing the identity matrix to the right of the matrix A. Suppose
(A|In) ∼ (In|B). Then A is invertible, and B = A−1. 2

Here, (A|In) ∼ (In|B) means we can get from one double matrix to the other
by elementary row operations.
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Example 4.13 Let

A =

0 1 1
1 1 1
1 0 1


We have

(
A|I3) =

 0 1 1 1 0 0
1 1 1 0 1 0
1 0 1 0 0 1

 ∼
 1 0 1 0 0 1

1 1 1 0 1 0
0 1 1 1 0 0

 ∼
 1 0 1 0 0 1

0 1 0 0 1 −1
0 1 1 1 0 0


∼

 1 0 1 0 0 1
0 1 0 0 1 −1
0 0 1 1 −1 1

 ∼
 1 0 0 −1 1 0

0 1 0 0 1 −1
0 0 1 1 −1 1

 .

It follows from the above that A is invertible, and

A−1 =

 −1 1 0
0 1 −1
1 −1 1

 .

Further, we can check our arithmetic. Multiplying matrices, we see that
AA−1 = I3 and A−1A = I3.

4.3 Determinants

Let

A =

(
a b
c d

)
be a 2× 2 matrix. Then we define the determinant

detA =

∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc

The definition of the determinant of a 3× 3 matrix uses the definition of the
determinant of a 2× 2 matrix.

To be more precise, let

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


be a 3× 3 matrix. For i, j = 1, 2, 3, the (i, j)-minor of A is the determinant of
the 2×2 matrix obtained by deletion of the row i and column j from A, and the
(i, j)-cofactor of A, denoted Aij , is the result of multiplying the (i, j)-minor of
A by the sign (−1)i+j . This sign can be seen in the matrix of alternating plus
and minus symbols:  + − +

− + −
+ − +

 .

40



For example, with

A =

 1 2 4
3 1 −1
2 5 6


we have

A12 = −

∣∣∣∣∣∣ 3 −1
2 6

∣∣∣∣∣∣ .
The determinant detA can be calculated by expansion along any row or

down any column. Thus

detA = a11A11 + a12A12 + a13A13 (expansion along the first row)

= a21A21 + a22A22 + a23A23 (expansion along the second row)

= a31A31 + a32A32 + a33A33 (expansion along the third row)

= a11A11 + a21A21 + a31A31 (expansion down the first column)

= a12A12 + a22A22 + a32A32 (expansion down the second column)

= a13A13 + a23A23 + a33A33 (expansion down the third column).

Example 4.14 Find detA, where

A =

 1 2 4
3 1 −1
2 5 6

 .

Solution: By expansion along the first row,

detA =

∣∣∣∣∣∣
1 2 4
3 1 −1
2 5 6

∣∣∣∣∣∣
= 1

∣∣∣∣∣∣ 1 −1
5 6

∣∣∣∣∣∣− 2

∣∣∣∣∣∣ 3 −1
2 6

∣∣∣∣∣∣+ 4

∣∣∣∣∣∣ 3 1
2 5

∣∣∣∣∣∣
= (6− (−5))− 2(18− (−2)) + 4(15− 2) = 11− 40 + 52 = 23. 2

More generally, for an n × n matrix A, the definition of the determinant
detA is recursive; it uses the definition of the determinant of an (n−1)×(n−1)
matrix, in the same way as the determinant of a 3×3 matrix is defined in terms
of determinants of 2× 2 matrices.

This is fine; we eventually get to a calculation in terms of determinants of
2 × 2-matrices, and we have an explicit formula for the determinant of a 2 × 2
matrix.

Definition 4.15 Let A = (aij) ∈ Mn(R), where n ≥ 2. For 1 ≤ i, j ≤ n, the
(i, j)-minor of A is the determinant of the (n− 1)× (n− 1) matrix obtained by
deletion of row i and column j in the matrix A.
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The (i, j)-cofactor of A, written Aij , is the result of multiplying the (i, j)-
minor by the sign (−1)i+j .

We define the determinant of A by the formula

detA = a11A11 + a12A12 + · · ·+ a1nA1n

We call the above expression ‘expansion along the first row’ of the matrix
A.

Remark 4.16 It will occasionally be useful to consider the determinant of a
1× 1 matrix. Such a determinant is defined trivially:

det(a) = a

Example 4.17 Find detA, where

A =


2 4 −3 1
0 0 1 4
−1 1 0 1
3 −1 1 1

 .

Solution: Observe

detA =

∣∣∣∣∣∣∣∣
2 4 −3 1
0 0 1 4
−1 1 0 1
3 −1 1 1

∣∣∣∣∣∣∣∣
= 2

∣∣∣∣∣∣∣∣
0 1 4
1 0 1
−1 1 1

∣∣∣∣∣∣∣∣− 4

∣∣∣∣∣∣∣∣
0 1 4
−1 0 1
3 1 1

∣∣∣∣∣∣∣∣
+ (−3)

∣∣∣∣∣∣∣∣
0 0 4
−1 1 1
3 −1 1

∣∣∣∣∣∣∣∣+−1

∣∣∣∣∣∣∣∣
0 0 1
−1 1 0
3 −1 1

∣∣∣∣∣∣∣∣
= 2
(
− (1− (−1)) + 4

)
− 4
(
− (−1− 3) + 4(−1)

)
− 3
(
4(1− 3)

)
− 1
(
1(1− 3)

)
= 2× 2 + 0 + 3× 8 + 1× 2 = 4 + 24 + 2 = 30.

In fact we can expand along any row or column to calculate determinants.
To be precise, we have the following result.

Theorem 4.18 Let A = (aij) ∈ Mn(R), where n ≥ 2. Then the determinant
detA can be expanded along any row or down any column; in other words, for
each i = 1, . . . , n,

detA = ai1Ai1+ai2Ai2+· · ·+ainAin =
∑n
j=1 aijAij (expansion along the i-th row)
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and for each j = 1, . . . , n,

detA = a1jA1j+a2jA2j+· · ·+anjAnj =
∑n
i=1 aijAij (expansion down the j-th column).

2

Definition 4.19 A square matrix B = (bij) is said to be lower triangular if it
takes the form

B =


b11 0 . . . 0 0
b21 b22 . . . 0 0
...

. . .
...

bn−1 1 bn−1 2 . . . bn−1n−1 0
bn1 bn2 . . . bnn−1 bnn

 .

The following result is shown using mathematical induction and the defini-
tion of the determinant.

Proposition 4.20 Let B be a lower triangular matrix. Then the determinant
detB is the product of the diagonal entries. 2

A similar result is also true for upper triangular matrices, which are defined
in the obvious way.

Corollary 4.21 Let

D =


d1 0 . . . 0 0
0 d2 . . . 0 0
...

. . .
...

0 0 . . . dn−1 0
0 0 . . . 0 dn


Then

detD = d1d2 . . . dn−1dn.

2

A matrix of the above type is called a diagonal matrix.

Example 4.22 Let In be the n× n identity matrix. Then det In = 1.

We conclude with two properties of determinants that are the key to many
of their uses in calculations. We omit the proofs.

Theorem 4.23 Let A and B be n × n matrices. Then det(AB) =
det(A) det(B). 2

Theorem 4.24 Let A be an n × n matrix. Then A is invertible if and only if
detA 6= 0. 2
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Example 4.25 Let

A =

0 1 1
1 1 1
1 0 1

 .

We have

detA = −
∣∣∣∣ 1 1

1 1

∣∣∣∣+

∣∣∣∣ 1 1
1 0

∣∣∣∣ = −1 6= 0

so A is invertible.

4.4 Eigenvalues and Eigenvectors

Definition 4.26 Let A be an n×n (square) matrix. A number λ ∈ R is called
an eigenvalue of the matrix A if there is a non-zero vector v such that Av = λv.

Such a non-zero column vector v is called an eigenvector of A with eigenvalue
λ, or more briefly a λ-eigenvector of the matrix A.

Observe Av = λv if and only if

Av − λv = Av − λIv = (A− λI)v = 0.

So λ ∈ R is an eigenvalue of the matrix A if and only if the system of linear
equations

(A− λI)v = 0

has a non-zero solution. Each non-zero solution to the above equation is a
λ-eigenvector.

Definition 4.27 Let A be an n × n matrix. The characteristic polynomial of
A is the polynomial χA(t) defined by the formula

χA(t) = det(A− tIn)

Theorem 4.28 Let A be an n × n matrix. Then a real number λ ∈ R is an
eigenvalue of A if and only if χA(λ) = 0.

Proof: Let λ ∈ R. Then λ is an eigenvalue of the matrix A if and only if we
have a non-zero solution to the system of linear equations (A− λI)v = 0.

Now, if A − λI were invertible, the above equation would imply v = (A −
λI)−10 = 0, so we would have no non-zero solutions. Thus (A − λI)v = 0 has
a non-zero solution precisely when A− λI is not invertible.

By the above, this occurs when det(A− λI) = χA(λ) = 0. 2

So the eigenvalues of the matrix A are precisely the roots of the characteristic
polynomial χA(t).

Once we know that λ ∈ R is an eigenvalue of the matrix A, we can find all
λ-eigenvectors by solving the system of linear equations (A− λIn)X = 0; every
non-trivial solution (and there will be some, since λ is an eigenvalue) will be a
λ-eigenvector.

Note that any non-zero multiple of a λ-eigenvector is also a λ-eigenvector.
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Example 4.29 Let

A =

(
1 2
−1 4

)
.

Find the eigenvalues and eigenvectors of A.

Solution: We begin by finding the roots of the characteristic polynomial χA(t)
of A:

χA(t) = det(A−tI2) =

∣∣∣∣ 1− t 2
−1 4− t

∣∣∣∣ = (1−t)(4−t)+2 = 6−5t+t2 = (3−t)(2−t).

Thus the eigenvalues of A are 3 and 2.
To find the eigenvectors corresponding to the eigenvalue 3, we solve the

system of linear equations (A− 3I2)

(
x
y

)
= 0. The augmented matrix of this

system(
A− 3I2|0

)
=

(
−2 2 0
−1 1 0

)
∼
(
−2 2 0
0 0 0

)
∼
(

1 −1 0
0 0 0

)
.

Therefore the general solution of the system is given by y = α, x = α, where
α can be any real number; therefore the set of eigenvectors of A corresponding
to the eigenvalue 3 is {

α

(
1
1

)
| α ∈ R, α 6= 0

}
.

(Remember that zero is not an eigenvector).
To find the eigenvectors corresponding to the eigenvalue 2, we solve the

system of linear equations (A− 2I2)

(
x
y

)
= 0. The augmented matrix of this

system is(
A− 2I2|0

)
=

(
−1 2 0
−1 2 0

)
∼
(
−1 2 0
0 0 0

)
∼
(

1 −2 0
0 0 0

)
.

Therefore the general solution of the system is given by y = µ, x = 2β, where
β can be any real number; therefore the set of eigenvectors of A corresponding
to the eigenvalue 2 is {

µ

(
2
1

)
| β ∈ R, β 6= 0

}
.

4.5 Diagonalisation

Definition 4.30 Let A,B ∈ Mn(R). We say that the matrices A and B are
similar if there is an invertible matrix P such that B = P−1AP .

Proposition 4.31 Similar matrices have the same characteristic polynomial.
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Proof: Let B = P−1AP . Then

χB(t) = det(P−1AP − tIn) = det(P−1AP − P−1tInP ) = det(P−1(A− tIn)P )

Hence, by theorem ??

χB(t) = det(P−1) det(A− tIn) detP = det(P−1)χA(t) detP

But determinants are just real numbers, so the above order of multiplication
does not matter. Hence, since taking the determinant preserves multiplication,
we have

χB(t) = det(P−1) detPχA(t) = det(P−1P )χA(t) = det InχA(t) = χA(t)

which completes the proof. 2

Corollary 4.32 Similar matrices have the same eigenvalues. 2

Recall that a matrix of the form

D =


d1 0 . . . 0 0
0 d2 . . . 0 0
...

. . .
...

0 0 . . . dn−1 0
0 0 . . . 0 dn


is called a diagonal matrix.

Such a matrix has characteristic polynomial

χD(t) = det


d1 − t 0 . . . 0 0

0 d2 − t . . . 0 0
...

. . .
...

0 0 . . . dn−1 − t 0
0 0 . . . 0 dn − t


that is

χD(t) = (d1 − λ)(d2 − λ) · · · (dn − λ)

Thus the eigenvalues of the matrix D are precisely the diagonal entries.

Definition 4.33 We call a matrix A diagonalisable if it is similar to a diagonal
matrix.

In other words, a matrix A is diagonal if we have a diagonal matrix D and
an invertible matrix P such that P−1AP . The diagonal elements of the matrix
D will be the eigenvalues of A.
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Remark 4.34 Let

D =


d1 0 . . . 0 0
0 d2 . . . 0 0
...

. . .
...

0 0 . . . dn−1 0
0 0 . . . 0 dn


be a diagonal matrix. Then we can check by induction that

Dk =


dk1 0 . . . 0 0
0 dk2 . . . 0 0
...

. . .
...

0 0 . . . dkn−1 0
0 0 . . . 0 dkn


for all k ∈ N.

Suppose we have a matrix A and an invertible matrix P such that P−1AP =
D. Then A = PDP−1, and

Ak = (PDP−1)(PDP−1) · · · (PDP−1) = PDkP−1

so

Ak = P


dk1 0 . . . 0 0
0 dk2 . . . 0 0
...

. . .
...

0 0 . . . dkn−1 0
0 0 . . . 0 dkn

P−1

Diagonalisation is the process of finding, for a matrix A, an invertible ma-
trix P and diagonal matrix D such that A = PDP−1. We call the matrix A
diagonalisable if such matrices exist.

We do not really go into the question of whether or not a matrix is diago-
nalisable in this course. However, note that ”most” matrices are diagonalisable.

The following result presents a procedure for diagonalisation.

Theorem 4.35 Let A be an n×n matrix, with n distinct eigenvalues λ1, . . . , λn,
and associated eigenvectors v1, . . . , vn. Set

P =

 v1 v2 . . . vn

 ∈Mn(R) D =


λ1 0 . . . 0
0 λ2 0
...

. . .

0 0 . . . λn

 .

Then A = PDP−1. 2
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Thus an n × n matrix with n distinct eigenvalues is diagonalisable. One
can also make the above procedure work when we have a repeated eigenvalue;
if an eigenvalue is repeated (for example) 3 times, then we need 3 linearly
independent eigenvectors. However, we will not look at repeated eigenvalues in
any more detail in this course.

Example 4.36 Diagonalise

A =

3 −5 5
2 −4 5
2 −2 3


Solution: We can calculate that A has eigenvalues 1, −2 and 3, that v1 = 0

1
1

 is an eigenvector of A corresponding to the eigenvalue 1, that v2 = 1
1
0

 is an eigenvector of A corresponding to the eigenvalue −2, and that

v3 =

 1
1
1

 is an eigenvector of A corresponding to the eigenvalue 3.

Since v1, v2, v3 are eigenvectors of A corresponding to distinct eigenvalues of
A, by the above we have an invertible matrix

P =

 v1 v2 v3

 =

0 1 1
1 1 1
1 0 1

 is such that A = P

1 0 0
0 −2 0
0 0 3

P−1.
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5 Combinatorics and Probability

5.1 Counting Elements of Sets

We call a set A finite if it contains only finitely many elements. For example,
{1, 2, 3} is finite whereas Z is not. We write |A| to denote the number of elements
in a finite set A.

Theorem 5.1 Let A and B be finite sets. Then

|A ∪B| = |A|+ |B| − |A ∩B|.

Proof: Let
A ∩B = {c1, . . . , ck}.

Then A∩B has n elements, so |A∩B| = k. Every element of A∩B belongs
to A, so we can add elements a1, . . . , am to A ∩ B to get A. In other words,
write

A = {c1, . . . , ck, a1, . . . , am}

so |A| = k +m.
Similarly, we have b1, . . . , bn for which

B = {c1, . . . , ck, b1, . . . , bn}

so |B| = k + n.
Observe

A ∪B = {c1, . . . , ck, a1, . . . , am, b1, . . . , bn}

as we only write down an element of a set once. We see that |A∪B| = k+m+n.
Now

|A|+ |B| − |A ∩B| = (k +m) + (k + n)− k = k +m+ n = |A ∪B|.

2

In particular, note that if A ∩B = ∅, then

|A ∪B| = |A|+ |B|.

Our next result counting principle involves the Cartesian product of two
sets. Recall that for sets A and B, the Cartesian product is the set of ordered
pairs

A×B = {(a, b) | a ∈ A, b ∈ B}.

If A and B are finite sets, then we have the formula

|A×B| = |A| · |B|.
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Example 5.2 Let
A = {1, 2, 3} B = {1, 2}.

Then
A×B = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)}.

Observe
|A| = 3 |B| = 2 |A×B| = 3× 2 = 6.

Similarly, if we have a set A and a positive integer r, we define Ar to be the
set of ordered r-tuples of elements of A:

Ar = {(a1, a2, . . . , ar) | ai ∈ A}.

If A is a finite set, with n elements, then we have

|Ar| = nr.

Example 5.3 Consider a combination lock, with three digits, each of which is
a number from 0 to 9. Then the set of all combinations is

{0, 1, 2, . . . , 9}3 = {(a, b, c) | a, b, c = 0, 1, 2, . . . , 9}.

The total number of possible combinations in the lock is the number of
elements of this set, which is

103 = 1000.

5.2 Permutations and Combinations

Example 5.4 How many different anagrams are there of the word BARK ?
Here, any rearrangement of the letters counts as an anagram, whether or not it
is a valid word.

Solution: To solve this problem, suppose we are writing down these four letters
in some order. Observe:

• There are 4 different choices for the first letter.

• There remain 4− 1 = 3 different choices for the second letter.

• There are 2 choices for the third letter.

• Only 1 choice is left for the fourth letter.

So there are
4× 3× 2× 1 = 24

different anagrams.
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Recall that for a positive integer r, we define r factorial:

r! = 1× 2× 3× · · · × r.

As a special case (to make certain formulae work), we write 0! = 1.
Generalising the above example, if we have a set with r different elements,

there are r! different orders in which they can be arranged.

Example 5.5 Suppose we have a race with eight contestants. The one who
comes first in the race gets a gold medal, the one who comes second gets a
silver, and the one who comes third gets a bronze.

How many possible ways can medals be awarded ?

Solution:
To solve this problem, observe:

• There are 8 choices for the person who comes first, and gets gold.

• Knowing who gets gold, there are 7 choices for who gets silver.

• Knowing who gets gold and silver, there are 6 choices for who gets bronze.

So the total number of possibilities for how medals are awarded is:

8× 7× 6 = 336.

Theorem 5.6 Suppose we have a set of n elements. The number of ways of
ordering k of these n elements is

P (n, k) =
n!

(n− k)!
.

2

To use this theorem in the above example, we want to order 3 of 8 elements.
The number of ways of doing this is

P (8, 3) =
8!

(8− 3)!
=

8!

5!
= 336.

The reason the theorem works here (and in general) is that the above fraction
cancels some of the factors in the top factorial. So here (and more generally)

8!

5!
=

1× 2× 3× 4× 5× 6× 7× 8

1× 2× 3× 4× 5
= 6× 7× 8.

Theorem 5.7 Suppose we have a set of n elements. The number of ways of
choosing a subset of k elements is

C(n, k) =
n!

k!(n− k)!
.
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Proof: Let C(n, k) be the number of different ways of choosing a subset of k
elements. The number of ways of choosing an ordered set of k elements is

P (n, k) =
n!

(n− k)!
.

If we have a set of k elements, there are k! different ways of putting it into
order. So, each subset of k elements accounts for k! different ordered sets.

In other words, k!C(n, k) = P (n, k). Dividing

C(n, k) =
P (n, k)

k!
=

n!

k!(n− k)!
.

2

It is easiest to remember the above formula and use it directly in problems.

Example 5.8 How many ways are there of choosing a team of three people
from a group of twelve?

Solution: We see we are choosing a subset of 3 elements from a set of 12, so
the number of choices is just

C(12, 3) =
n!

k!(n− k)!
=

12× 11× 10

3× 2× 1
= 220.

5.3 Probability Space

To study probability mathematically we need to formalise the concept.

Definition 5.9 A probability space (Ω, P ) consists of a sample space Ω, and a
probability function, P , which assigns a number P (A), where 0 ≤ P (A) ≤ 1, to
each subset A ⊆ Ω. This probability function is required to satisfy the axioms:

• P (∅) = 0 and P (Ω) = 1.

• If A,B ⊆ Ω, and A ∩B = ∅, then P (A ∪B) = P (A) + P (B).

Subsets of the sample space Ω are called events. Given an event A, the
number P (A) is called the probability of A.

In the case of a set A = {a}, informally we write P (a) instead of P (A) or
P ({a}).

Let A1, A2, . . . , An ⊆ Ω be such that Ai∩Aj = ∅. Then iterating the second
of the above properties tells us

P (A1 ∪A2 ∪ · · · ∪An) = P (A1) + P (A2) + · · ·+ P (An).

In particular, if A = {a1, . . . , an} is a finite subset of Ω, then

P (A) = P (a1) + P (a2) + · · ·+ P (an).

We think of the event A ∪B as the event where A or B occurs.
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Example 5.10 Consider tossing a coin. Then the sample space Ω is the set
of possible outcomes; we have Ω = {H,T}, where H stands for Heads and T
stands for Tails.

Assuming the chance of each is equally likely, the probability function is
defined by saying P (H) = 1

2 and P (T ) = 1
2 .

Example 5.11 Consider rolling a fair six-sided die. Then the sample space,
Ω, is the set of possible dice rolls; we have Ω = {1, 2, 3, 4, 5, 6}. The probability
function is determined by saying that P (k) = 1

6 for each k ∈ Ω.
By the above, we have, for example

P ({1, 3}) = P (1) + P (3) =
1

6
+

1

6
=

1

3
.

The above examples illustrates an important principle. If the sample space
Ω is finite, and each ω ∈ Ω is equally likely, then P (ω) = 1

|Ω| . More generally,

for an event A,

P (A) =
|A|
|Ω|

.

Example 5.12 Suppose a coin is tossed five times. Work out the probability
of having precisely two heads in the sequence of tosses.

Solution: Note that each possible sequence, such as HTTHH is equally likely.
There are 25 = 32 such sequences.

The total number of sequences with precisely two heads is the number we
get from choosing 2 elements from a set of 5, that is

C(5, 2) =
5!

2!3!
=

5× 4

2
= 10.

So the probability of exactly two heads is

P (Two heads) =
10

32
=

5

16
.

Example 5.13 Suppose a coin is tossed five times. Work out the probability
of having two or fewer heads in the sequence of tosses.

Solution: A slightly harder question is to work out the probability of there
being two or fewer heads. Well, above, we worked out that the probability of
exactly two heads is 5

16 .
Similarly, there are

C(5, 1) =
5!

1!
4! = 5

sequences with just one head, so

P (One head) =
5

32
.
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There is precisely one sequence with no heads- the sequence of all tails- so

P (No heads) =
1

32
.

Now, the set of sequences with two or fewer heads is the union of the sets
of sequences with no, one, and two heads. The intersection of any two of these
sets is zero, so

P (Two or fewer heads) =
1

32
+

5

32
+

5

16
=

16

32
=

1

2
.

Given events A and B in a probability space, we think of the probability
P (A ∩B) as the probability of event A and event B occurring.

Definition 5.14 We call two events, A and B, in a probability space indepen-
dent if P (A ∩B) = P (A)P (B).

Example 5.15 Consider tossing a coin twice. Let A be the set of sequences
of two tosses where the first toss is a head. Let B be the set of sequences of
two tosses where the second toss is a head. Then P (A) = 1

2 , P (B) = 1
2 , and

P (A ∩B) = 1
4 .

Thus A and B are independent.

Recall that if we have a subset X ⊆ Y , we define the difference

Y \X = {y ∈ Y | y 6∈ X}.

The following is sometimes useful in working out examples. The proof is a
straightforward exercise.

Proposition 5.16 Let (Ω, P ) be a probability space. Let A be an event. Then

P (Ω\A) = 1− P (A).

2

Example 5.17 Suppose a coin is tossed five times. Work out the probability
of having at least one head in the sequence of tosses.

Solution: Let Ω be the sample space consisting of all sequences of five coin
tosses. Let A be the event where we have at least one head. Then Ω\A is the
event where we have no heads, that is all tails.

There are 25 = 32 possible sequences of coin tosses, all equally likely. There
is only one sequence where all we have is tails. So

P (Ω\A) =
1

32

and by the above

P (A) =
31

32
.
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5.4 Conditional Probability

Let A and B be events in a probability space (Ω, P ). We can think of A∩B as
the event where both A and B occur. If it is impossible for A and B to occur
simultaneously, then A ∩B = ∅, and we have our usual formula

P (A ∪B) = P (A) + P (B).

More generally, we have the following.

Proposition 5.18 Let (Ω, P ) be a probability space. Let A and B be events.
Then

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof: Let C = A\(A ∩ B). Then A = (A ∩ B) ∪ C, and (A ∩ B) ∩ C = ∅.
Hence

P (A) = P (A ∩B) + P (C).

Similarly, if D = B\(A ∩B), then

P (B) = P (A ∩B) + P (D).

Now,
A ∪B = C ∪D ∪ (A ∩B)

and the intersection of any two of the sets in the union on the right is empty.
So

P (A ∪B) = P (C) + P (D) + P (A ∩B) = P (A) + P (B)− P (A ∩B)

by the above. 2

Definition 5.19 Let (Ω, P ) be a probability space. Let A and B be events,
where P (B) > 0. Then we define the conditional probability of A given B:

P (A|B) =
P (A ∩B)

P (B)
.

We think of the conditional probability P (A|B) as the probability that A
occurs if we already know that B occurs.

Observe that if A and B are independent, with non-zero probabilities, then
P (A ∩B) = P (A)P (B), so

P (A|B) =
P (A ∩B)

P (B)
=
P (A)P (B)

P (B)
= P (A)

and similarly P (B|A) = P (B). Thus for independent events, the presence of
one does not affect the probability of the other.

The following is easy to check.
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Proposition 5.20 The pair (B,P (−|B)) is a probability space. 2

Example 5.21 A fair six-sided die is rolled twice. Find the probability that
the first number thrown is no larger than 3 given that that sum of the two
numbers thrown is 6.

Solution: Let A be the event where the first number thrown is 3 or lower. Let
B be the event that the sum of the two numbers thrown is 6. Then we need to
calculate P (A|B).

In this problem, our event space is

Ω = {(i, j) | i, j ∈ {1, 2, 3, 4, 5, 6}}.

Observe |Ω| = 6× 6 = 36.
We have

A = {(i, j) | i ∈ {1, 2, 3}, j ∈ {1, 2, 3, 4, 5, 6}

and
B = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}

so
A ∩B = {(1, 5), (2, 4), (3, 3)}.

We see that

P (A ∩B) =
3

36
=

1

12
P (B) =

5

36
so

P (A|B) =
P (A ∩B)

P (B)
=

3

5
.

Definition 5.22 Let (Ω, P ) be a probability space. A partition of Ω is a
collection B1, B2, . . . , Bn of events such that Bi ∩ Bj = ∅ for all i, j, and
B1 ∪ · · · ∪Bn = Ω.

Note that if B1, B2, . . . , Bn is a partition of Ω, then

P (B1) + P (B2) + · · ·+ P (Bn) = 1.

The following result is sometimes called the partition theorem.

Theorem 5.23 Let (Ω, P ) be a probability space. Let B1, B2, . . . , Bn be a par-
tition of Ω. Then for any event A

P (A) = P (A|B1)P (B1) + P (A|B2)P (B2) + · · ·+ P (A|Bn)P (Bn).

Proof: Observe

(A ∩B1) ∪ (A ∩B2) ∪ · · · ∪ (A ∩Bn) = A ∩ (B1 ∪B2 ∪ · · · ∪Bn) = A ∩ Ω = A.

We have
P (A|Bi)P (Bi) = P (A ∩Bi)
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and (A ∩Bi) ∩ (A ∩Bj) = ∅ if i 6= j. Therefore, from the above

P (A) = P (A∩B1)+P (A∩B2)+· · ·+P (A∩Bn) = P (A|B1)P (B1)+P (A|B2)P (B2)+· · ·+P (A|Bn)P (Bn)

as required. 2

Example 5.24 The probability of someone having a particular disease is 0.001.
There is a test for the disease, where:

• If the test is given to a person with the disease, the test is positive with
probability 0.99.

• If the test is given to a person without the disease, the test is negative
with probability 0.95.

If a person’s test is positive, what is the probability that the person has the
disease ?
Solution: Consider a person being tested. Let A be the event where they have
the disease, B be the event where they test positive. Write Ac = Ω\A and
Bc = Ω\B.

We are being asked to calculate P (A|B). We know that P (A) = 0.001,
P (B|A) = 0.99 and P (Bc|Ac) = 0.95. Hence P (Bc|A) = 0.01, and P (B|Ac) =
0.05.

We know that A,Ac is a partition of the sample space. So by the partition
theorem

P (B) = P (B|A)P (A) + P (B|Ac)P (Ac)

Now by definition of conditional probability and the above

P (A|B) =
P (A ∩B)

P (B)
=

P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)

Hence

P (A|B) =
0.99× 0.001

0.99× 0.001 + 0.05× 0.999
≈ 0.019.

Thus, if the test is positive, the chance of having the disease is 0.019. This
is, on the surface, a surprising result. It reflects the rarity of the disease and
comparative unreliability of the test.
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6 Variables and Processes

6.1 Random Variables

Definition 6.1 A random variable is a function X : Ω → R, where (Ω, P ) is a
probability space.

Example 6.2 We can define a random variable X to be the sum of two six-
sided dice. To square this with the formal definition, when rolling two six-sided
dice, the sample space is

Ω = {(i, j) | i, j ∈ {1, 2, 3, 4, 5, 6}}

and the random variable X is defined by the formula

X(i, j) = i+ j.

The interesting things about random variables are their possible values, and
the probabilities they take those values.

Definition 6.3 Let (Ω, P ) be a probability space, and let X : Ω → R be a
random variable. Let x ∈ R. Then we write

P (X = x) = P ({ω ∈ Ω |X(ω) = x}).

For a subset A ⊆ R, we write

P (X ∈ A) = P ({ω ∈ Ω |X(ω) ∈ A}).

Example 6.4 Consider the above random variable, X, obtained by adding two
six-sided dice together. Let

A = {(i, j) = | i, j ∈ {1, 2, 3, 4, 5, 6}, i+ j = 6}.

Then P (X = 6) = P (A). Observe

A = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}

so |A| = 5. On the other hand, |Ω| = 36, and the dice are fair, so all outcomes
are equally likely. Hence

P (X = 6) = P (A) =
5

36
.

Definition 6.5 We call a random variable X discrete if for all A ⊆ R we have

P (X ∈ A) =
∑
a∈A

P (X = a).

For a discrete random variable, the function pX : R → R defined by the
formula pX(x) = P (X = x) is called the probability mass function.
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The probability mass function determines everything we need to know about
a discrete random variable. We look at some detailed examples in the next
section.

Proposition 6.6 Let X be a discrete random variable with probability mass
function pX . Then ∑

x∈R
pX(x) = 1.

Proof: Note that

P (X ∈ R) = P ({ω ∈ Ω | X(ω) ∈ R}) = P (Ω) = 1

since every value of X is in R.
By definition of a discrete random variable∑

x∈R
pX(x) = P (X ∈ R) = 1.

2

Definition 6.7 Let X be a discrete random variable, with probability mass
function pX . Then we define the expectation

E(X) =
∑
x∈R

xpX(x).

Note that in the above sum, we need only add the elements xpX(x) together
when the probability PX(x) = P (X = x) is not zero, that is to say when x is a
possible value of the random variable X.

We think of E(X) as the average value of X.

Example 6.8 Let X be the random variable obtained by taking the result of
rolling a fair 6-sided die. Then we have probability mass function

pX(x) =

{
1
6 x ∈ {1, 2, 3, 4, 5, 6}
0 otherwise

Hence the range of possible values is {1, 2, 3, 4, 5, 6} and we have expectation

E(X) =

6∑
n=1

n

6
=

21

6
=

7

2
.

Note that if X is a random variable, and f : R → R is a function, then we
have a new random variable f(X) = f ◦X defined by composing these functions.

By definition

E(f(X)) =
∑
x∈R

f(x)pX(x).
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Definition 6.9 Let X be a discrete random variable, with expectation µ =
E(X). Then we define the variance

var(X) = E((X − µ)2).

We define the standard deviation sd(X) =
√
var(X).

The standard deviation of X is a measure of its randomness. We think of
the standard deviation of X as the average distance of X from its expectation.
There are some short-cuts in working out the variance.

Proposition 6.10 Let X be a discrete random variable. Then

var(X) = E(X2)− E(X)2.

Proof: Observe

var(X) =
∑
x∈R

(x− µ)2pX(x) =
∑
x∈R

x2pX(x)− 2µ
∑
x∈R

xpX(x) + µ2
∑
x∈R

pX(x).

Now ∑
x∈R

x2pX(x) = E(X2)
∑
x∈R

xpX(x) = µ
∑
x∈X

pX(x) = 1.

Putting this together

var(X) = E(X2)− 2µ2 + µ2 = E(X2)− µ2.

2

Example 6.11 Let X be the random variable obtained by taking the result of
rolling a fair 6-sided die. Then we have probability mass function

pX(x) =

{
1
6 x ∈ {1, 2, 3, 4, 5, 6}
0 otherwise

By the previous example, we have expectation E(X) = 7
2 . Now

E(X2) =

6∑
n=1

n2

6
=

91

6

so

var(X) = E(X2) = E(X)2 =
91

6
− 49

4
=

35

12
≈ 2.917

Taking the square root, we see

sd(X) ≈ 1.708.
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6.2 Examples

Here we note some facts about some standard discrete random variables. All
calculations are left as exercises.

Definition 6.12 Let 0 ≤ p ≤ 1. We say a random variable X has the Bernoulli
distribution with parameter p if the range of possible values of X is {0, 1}, and
P (X = 1) = p, P (X = 0) = 1− p.

Example 6.13 Suppose we have a coin that lands on the heads side with prob-
ability p, and the tails side with probability 1− p. Define a random variable X
by tossing the coin, and seting X = 1 when we get heads, and X = 0 when we
get tails. Then X has the Bernoulli distribution.

Proposition 6.14 Let X be a random variable with the Bernoulli distribution
with parameter p. Then E(X) = p, and var(X) = p(1− p). 2

Definition 6.15 Let n ∈ {1, 2, 3, . . .} and 0 ≤ p ≤ 1. We say the random
variable X has the binomial distribution with parameters n and p if the range
of possible values of X is {0, 1, 2, . . . , n}, and

P (X = k) = C(n, k)pk(1− p)n−k.

Example 6.16 Suppose we have a (perhaps biased) coin that lands on the
heads side with probability p, and the tails side with probability 1 − p. Define
a random variable X by tossing the coin n times and counting the number of
heads.

Then P (X = k) is the probability that our sequence of n tosses contains
precisely k heads. There are C(n, k) sequences of tosses which have k out of n
heads. The chance of each of them occurring is pk(1− p)n−k, as we need heads
k times (each with probability p), and tails n− k times (each with probability
1− p). Therefore

P (X = k) = C(n, k)pk(1− p)n−k

and the random variable has a binomial distribution.

Proposition 6.17 Let X be a random variable with the binomial distribution
with parameters n and p. Then E(X) = np, and var(X) = np(1− p). 2

More generally, if we add n independent random variables with Bernoulli
distribution with parameter p together, we get a random variable with binomial
distribution with parameters n and p. We will not make this statement precise
in this course, however.

Definition 6.18 Let λ > 0. We say a random variable X has the Poisson
distribution with parameter λ if the range of possible values of X is {0, 1, 2, . . .},
and

P (X = k) =
1

k!
λke−λ.
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Proposition 6.19 Let X be a random variable with the Poisson distribution
with parameter λ. Then E(X) = λ, and var(X) = λ. 2

6.3 Difference Equations

Definition 6.20 A difference equation is a vector equation of the form vk+1 =
Avk, wher (vk) is a sequence of vectors in Rn, and A ∈Mn(R) is a fixed square
matrix.

Solving a difference equation means finding the vector vk when we know v0.
Since v1 = Av0, v2 = Av1 = A2v0, and so on; we have vk = Akv0 for all k ∈ N.

So we want to find the matrix Ak. This can be hard to do directly, especially
for a larger matrix- finding A10 for example, means multiplying the matrix A
by itself 10 times.

As we commented in section 4.5, the key to solving this problem is to diag-
onalise A. Suppose we have a diagonal matrix

D =


d1 0 . . . 0 0
0 d2 . . . 0 0
...

. . .
...

0 0 . . . dn−1 0
0 0 . . . 0 dn


be a diagonal matrix. Then

Dk =


dk1 0 . . . 0 0
0 dk2 . . . 0 0
...

. . .
...

0 0 . . . dkn−1 0
0 0 . . . 0 dkn

 .

If we diagonalise A, we find a diagonal matrix D and an invertible matrix
P such that A = PDP−1, and

Ak == PDkP−1.

As we commented above, Dk is easy to find, even for large D and large k.

Example 6.21 Consider the difference equation vk+1 = Avk, where

A =

(
6 −3
5 −2

)
v0 =

(
1
−1

)
.

Find v9.

Solution:
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• Step 1: We find the eigenvalues of the matrix A.

We have characteristic polynomial

χA(t) =

∣∣∣∣ 6− t −3
5 −2− t

∣∣∣∣ = (6−t)(−2−t)+15 = t2−4t+3 = (t−1)(t−3).

So we have eigenvalues 1 and 3.

• Step 2: Find corresponding eigenvectors.

Let X be an eigenvector with eigenvalue 1. Then (A − I)X = 0. This
system of linear equations has matrix(

5 −3 0
5 −3 0

)
∼
(

5 −3 0
0 0 0

)
.

We see that

(
3
5

)
is a 1-eigenvector.

Let X be an eigenvector with eigenvalue 3. Then (A − 3I)X = 0. This
system of linear equations has matrix(

3 −3 0
5 −5 0

)
∼
(

1 −1 0
0 0 0

)
.

We see that

(
1
1

)
is a 3-eigenvector.

• Step 3: Diagonalise. Set

D =

(
1 0
0 3

)
P =

(
3 1
5 1

)
.

Then A = PDP−1.

• Step 4: Find P−1.

We can use Gaussian elimination here

(P |I) ∼
(

3 1 1 0
5 1 0 1

)

∼
(

1 1
3

1
3 0

5 1 0 1

)
∼
(

1 1
3

1
3 0

0 − 2
3 − 5

3 1

)
∼
(

1 1
3

1
3 0

0 1 5
2 − 3

2

)
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∼
(

1 0 − 1
2

1
2

0 1 5
2 − 3

2

)
so

P−1 =

(
− 1

2
1
2

5
2 − 3

2

)
• Step 5: Work out Ak.

We have

Ak = PDkP−1 =

(
3 1
5 1

)(
1 0
0 3k

)(
− 1

2
1
2

5
2 − 3

2

)

=

(
3 3k

5 3k

)(
− 1

2
1
2

5
2 − 3

2

)
=

(
− 3

2 + 5
2 (3k) 3

2 −
3
2 (3k)

− 5
2 + 5

2 (3k) 5
2 = 3

2 (3k)

)
.

• Step 6: Work out vk.

We have

vk = Akv0 =

(
− 3

2 + 5
2 (3k) 3

2 −
3
2 (3k)

− 5
2 + 5

2 (3k) 5
2 = 3

2 (3k)

)(
1
−1

)
=

(
−3 + 3k

−5 + 3k

)
.

In particular, we were asked for v9, which is

v9 =

(
−3 + 59

−5 + 39

)
=

(
19680
19678

)
.

6.4 Markov Processes

Let us begin our discussion of Markov processes with an example.

Example 6.22 Suppose that bus passengers in Sheffield are studied. After
examining several years of data, it was found that 30% of people who regularly
use buses in a given year do not regularly use the bus in the next year. Also
it was found that 20% of the people who do not regularly use the bus in one
year begin to use the bus next year. If 30% of people used the bus regularly in
2012, what proportion can we predict will use the bus regularly in 2014 ? What
about k years after 2012 ?

Solution:
First we will determine the proportion people who will use the bus in 2013.

Of the 30% of people using the bus in 2012, 70% of them will continue to do so.
Of the remaining 70% of people who dont use the bus, 20% of them will begin
to use the bus.

Let b1 be the proportion using the bus regularly in 2013. Then

b1 = 0.7× 0.3 + 0.2× 0.7
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Let b2 be the proportion not using the bus regularly in 2013. Then by the
same argument as above,

b2 = 0.3× 0.3 + 0.8× 0.7

This is equivalent to the matrix equation Mx = b where

M =

(
0.7 0.2
0.3 0.8

)
x =

(
0.3
0.7

)
b =

(
b1
b2

)
.

Note that we calculate

b =

(
0.35
0.65

)
.

So in 2013, 35% of people will use the bus regularly. For computing the
result after 2 years, in 2014, we just use the same matrix M , however we use b
in place of x. Thus the distribution after 2 years is given by the vector

Mb = M2x.

In fact, after k years, the distribution is given by the vector Mkx. We can
solve this as for any other difference equation, by diagonalising M .

Definition 6.23 A stochastic process is a sequence of events in which the out-
come at any stage depends on some probability.

Definition 6.24 A Markov process is a stochastic process with the following
properties:

• The number of possible outcomes or states is finite.

• The outcome at any stage depends only on the outcome of the previous
stage.

• The probabilities are constant over time.

In a Markov process, let {ω1, ω2, . . . , ωn} be the set of states. After k stages,
let pi be the probability we are in state ωi, and let

vk =


p1

p2

...
pn

 .

We call vk the probability vector at stage k. Notice that the numbers pi must
add up to 1.
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When moving from one stage to another of a Markov process, the probability
of moving to state ωi when we are in state ωj , P (ωi|ωj), stays constant at each
stage. Let

M =


P (ω1|ω1) P (ω1|ω2) · · · P (ω1|ωn)
P (ω2|ω1) P (ω2|ω2) · · · P (ω2|ωn)

...
...

P (ωn|ω1) P (ωk|ω2) · · · P (ωn|ωn)


be the transition matrix.

Notice that the numbers in each column of M add up to 1. The definition
of a Markov process immediately gives us the following.

Theorem 6.25 In a Markov process with probability vectors vk and transition
matrix M , we have vk+1 = Mvk for all k. 2

Thus a Markov process is described by a difference equation. It follows from
our work in the previous section that our solution is given by

vk = Mkv0.

We can find Mk by diagonalising M . The following result can help us find
the eigenvalues.

Theorem 6.26 Let M be the transition matrix of a Markov process. Then

1. 1 is an eigenvalue of M .

2. If λ is an eigenvalue of M , then |λ| ≤ 1.

2

Our next result involves the long-term behaviour of Markov processes.

Theorem 6.27 Consider a Markov process with probability vectors (vk) and
transition matrix M . Suppose that the eigenvalue, 1, of M is not repeated. Let
v be a 1-eigenvector where the entries add up to 1. Then for large values of k,
vk ≈ v.

Proof: We have Ak = PDkP−1 where

D =


1 0 0
0 λ1

. . .

0 λn
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where |λi| < 1. For large k,

Dk ≈


1 0 0
0 0

. . .

0 0

 =: C

meaning
Akv0 ≈ PCP−1v0.

Now, the entries of Akv0 = vk always add up to 1. So the same is true for
v. Further,

APCP−1v0 = PDCP−1v0 = PCP−1v0

so v = PCP−1v0 is a 1-eigenvector. There is only one 1-eigenvector whose
entries add up to 1, so we are done. 2

Example 6.28 Let us return to our example of bus travellers in Sheffield. Re-
call that 30% of people who regularly use buses in a given year do not regularly
use the bus in the next year. 20% of the people who do not regularly use the
bus in one year begin to use the bus next year.

What proportion of people can we predict will use the bus in many years
time ?

Solution: We have a Markov process with transition matrix

M =

(
0.7 0.2
0.3 0.8

)
.

We know that 1 is an eigenvalue of M . By the above, we need to find a
1-eigenvector of M whose entries add up to 1.

An eigenvector of M corresponding to the eigenvalue 1 is a non-zero vector
v ∈ R3 such that (M − 1I)v = 0. We have

M − 1I =

(
−0.3 0.2
0.3 0.2

)
so it is clear that

u =

(
1
1

)
is an eigenvector of M corresponding to the eigenvalue 1. The entries of u do
not add up to 1- they add up to 2. So we divide M by 2 to get a new eigenvector

v =

(
0.5
0.5

)
The entries of the vector v do add up to 1. So v is the probability vector

governing the proportion of people using the bus in the long term.
In other words, in the long term, it is predicted that 50% of people will

regularly use the bus, and 50/
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Example 6.29 In the first year, every member of a certain sample of multi-
national European corporations required its board members to travel to board
meetings by air.

However, with increasing awareness of the contributions to climate change
caused by air travel, it is expected that, over the coming years, the firms will
change their instructions in this respect over time. In detail, it is expected that,
by the end of each period of twelve months:

• of those firms that required air travel to board meetings at the beginning
of the period, 90% will still be using air travel, 9% will have changed to
high-speed rail travel, and 1% will have eliminated the need for any travel
to board meetings by use of video-conferences;

• of those firms that required high-speed rail travel to board meetings at
the beginning of the period, 4% will have changed back to air travel, 90%
will still be using high-speed rail travel, and 6% will have eliminated the
need for any travel to board meetings by use of video-conferences; and

• each firm that was using video-conferences for its board meetings at the
beginning of the period would still be doing so at the end.

In the long term, after many years, what proportion of the firms will be
using air travel, high-speed rail travel, and video conferences ?

Solution: This is a Markov process, with probability vectors

vk =

 Proportion using air travel after k years.
Proportion using high speed raid travel after k years.
Proportion using video conferencing after k years.


and transition matrix

M =

 0.9 0.04 0
0.09 0.9 0
0.01 0.06 1

 .

We know that 1 is an eigenvalue of M . By the above, we need to find a
1-eigenvector of M whose entries add up to 1.

An eigenvector of M corresponding to the eigenvalue 1 is a non-zero vector
v ∈ R3 such that (M − 1I)v = 0. We have

M − 1I =

 −0.1 0.04 0
0.09 −0.1 0
0.01 0.06 0

 ,

So it is clear that

v =

 0
0
1
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is an eigenvector of M corresponding to the eigenvalue 1. The entries of the
vector v add up to 1. So v is the probability vector governing the proportion of
firms using the various forms of travel in the long term.

In other words, in the long term, it is predicted that 100% of firms will be
using video conferences, with none using air travel or high-speed rail travel.

6.5 PageRank

The PageRank algorithm was developed by Larry Page in 1996, and used by the
Google search engine. It is a system for ranking web pages according to their
use, and so determine which is returned first in a query from a search engine.
The key insight is that the higher ranked pages are more likely to be linked to.

Consider a collection of web pages, S1, S2, . . . , Sn. Imagine surfing the web
between these pages randomly. At each step, choose a link on the current page
at random and click it. Let ri be the average long term proportion of time we
spend on a particular page, Si. Then ri ≥ 0 for all i, and

∑n
i=1 ri = 1.

We use this number ri to rank page Si. So how do we calculate it ?
Assume that:

• Each page Sj contains at least one link to another page in the collection.

• No page contains more than one link to the same target.

Let Nj be the total number of links on page Sj . Then Nj > 0, and Nj is
the number of pages Sj links to. Define a matrix P by saying

P =


P11 P12 · · · P1n

P21 P22 · · · Pnn
...

...
Pn1 Pn2 · · · Pnn


where Pij = 1/Nj if there is a link from Sj to Si, and 0 otherwise.

Thus, when surfing the web randomly, we have a Markov process with tran-
sition matrix P . Let r be the probability vector with entries ri. Then r is the
probability vector governing the long-term behaviour of the process.

In other words, r is an eigenvector of P with eigenvalue 1, and where the
sum of the entries is 1. We calculate this to find the rank, ri, of each page.

Unfortunately, when the number n is very large (millions, or even billions),
as it will be when considering the number of web pages, r will be unfeasably
hard to calculate.

Of course, since r governs the long term behaviour of the Markov process,
we have the following.

Proposition 6.30 Let q be the vector where the entries are all 1/n. Then for
large k, P kq ≈ r. 2
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Actually, we don’t need k very large for the above to settle down. And P kq
is quite quick to calculate when k is small, at least for a computer.

Now, let us introduce a refinement to the algorithm. This refinement uses
the fact that a web surfer will eventually stop clicking on links. The probability
at each step that a person will continue is a number 0 < d < 1 called the
damping factor. Various studies have tested damping factors- it is generally set
at 0.85.

Anyway, in this case we have a Markov process where a link is clicked with
probability d, as above. With probability 1 − d, the surfing stops. The next
time the surfer starts, they choose a page at random. If we do this, we have a
Markov process with transition matrix

Q = dP + (1− d)R

where R is the n× n matrix where every entry is n. The page
As before, let r be the vector where the entry ri is the long term proportion

of time spent on page Si. Then again we calculate r to be the 1-eigenvector of
Q whose entries add up to 1.
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